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Abstract

Acoustic-to-articulatory inversion (AAI) is the process of in-
ferring vocal tract movements from acoustic speech signals.
Despite its diverse potential applications, AAI research in lan-
guages other than English is scarce due to the challenges of
collecting articulatory data. In recent years, self-supervised
learning (SSL) based representations have shown great poten-
tial for addressing low-resource tasks. We utilize wav2vec 2.0
representations and English articulatory data for training AAI
systems and investigates their effectiveness for a different lan-
guage: Dutch. Results show that using mms-1b features can re-
duce the cross-lingual performance drop to less than 30%. We
found that increasing model size, selecting intermediate rather
than final layers, and including more pre-training data improved
AAI performance. By contrast, fine-tuning on an ASR task did
not. Our results therefore highlight promising prospects for im-
plementing SSL in AAI for languages with limited articulatory
data.

Index Terms: acoustic-to-articulatory inversion, speech inver-
sion, self-supervised learning

1. Introduction
Speech inversion or acoustic-to-articulatory inversion (AAI) is
the process of inferring vocal tract movements from acoustic
speech signals. Recently, there has been increasing interest in
the development of AAI systems because of their potential ap-
plication across various speech-related tasks, such as Automatic
Speech Recognition (ASR) [1, 2], speech synthesis [3], pronun-
ciation training [4] and speech therapy [5]. Electromagnetic ar-
ticulography (EMA) is a widely used technique for gathering
precise articulatory data from human subjects [6]. EMA is a
point tracking method, where sensors placed on target articu-
lators (including tongue, lips, and jaw) are used to track artic-
ulatory movements in real time in 3D. Despite its efficacy, the
acquisition of EMA data remains challenging due to its cost and
the need for specialized technical expertise.

To facilitate research in speech production and AAI, several
EMA datasets are made publicly available, such as the Haskins
Production Rate Contrast (HPRC) [7], the MOCHA-TIMIT [8],
the MNGU0 [9], USC-TIMIT [10] and the EMA-MAE datasets
[11]. As most of the publicly available datasets are in English,
research on AAI tends to likewise prioritize English. For the
vast majority of other languages spoken worldwide, however,
sufficient data to train an AAI system is lacking.

Given that vocal tract anatomy and orofacial muscles are
language independent, and articulatory processes heavily over-
lap across languages, AAI systems trained with a rich-resource

language could potentially be adapted to relatively similar
lower-resource languages. Sivaraman and colleagues [12]
compared AAI models trained on English, Dutch, or Dutch-
accented English, and observed that testing with non-matching
languages resulted in diminished performance. Similar results
were achieved by studies comparing English and four Indian
languages [13], and English and Japanese [14]. Overall, cross-
linguistic transferability of AAI systems has shown less than
satisfactory results. This phenomenon may be attributed, in
part, to the use of Mel-frequency Cepstral Coefficients (MFCC)
as the acoustic features in these studies, which may lack the
capacity to represent rich and robust speech information.

In recent years, self-supervised learning (SSL) based pre-
trained models of speech, such as wav2vec 2.0 [15], have
demonstrated remarkable performance across various down-
stream tasks, showing potential for addressing the challenges
posed by limited training data. SSL features have also been in-
troduced into English AAI tasks, achieving state-of-the-art re-
sults [16, 17, 18]. To investigate the cross-lingual and cross-
speaker transferability of SSL features for AAI, Cho and col-
leagues [19] probed articulatory representation represented by
the individual layers in speech SSL models trained on different
languages. Although they found that the cross-lingual trans-
ferability of the representations was lower than within language
performance, cross-lingual performance was relatively high and
suggested the universality of the articulatory representation in
speech SSL models. They also found that representations cap-
tured by intermediate layers outperformed those by the final
layer. This has also been found for different tasks, such as the
task of quantifying pronunciation differences on the basis SSL
representations [20]. However, as the AAI systems developed
by Cho and colleagues were trained in a speaker-dependent
way, further research is needed to assess the full potential
of SSL representations in enhancing speaker-independent AAI
performance for languages lacking sufficient articulatory data.

The goal of this study is therefore to investigate the cross-
lingual generalizability of SSL representations for AAI. Specifi-
cally, we examine the performance of speaker-independent AAI
systems with English HPRC corpus and Dutch EMA data. By
comparing the performance of AAI systems trained with differ-
ent wav2vec 2.0 representations, we aim to answer the follow-
ing research questions:

• RQ1: How well do AAI models trained using SSL represen-
tations generalize to an unseen language?

• RQ2: How does AAI performance relate to features extracted
from different layers, models differing in model size, and pre-
training/fine-tuning datasets?



2. Method
2.1. EMA Datasets

English data For the English EMA dataset, we use the HPRC
dataset [7], which contains parallel acoustic and EMA data from
eight American English native speakers (four male, four fe-
male). The reading material contains 720 sentences, each re-
peated in both normal and fast speaking rates. The data con-
sist of eight EMA sensor trajectories at a sampling rate of 100
Hz and synchronized acoustics at 44,100 Hz, collected using
a Northern Digital WAVE system. We selected six sensors as
the articulatory target for our experiment, which are tongue
tip (1cm back from apex, TT), tongue blade (TB), tongue root
(TR), upper lip (UL), low lip (LL) and lower incisor (LI).

Dutch data The Dutch EMA data was collected originally
for another project to compare the articulation of oral cancer
speakers to control speakers [21]. This study utilizes the data
of three (one male, two female) Dutch control speakers, which
was collected in the Netherlands using a Northern Digital VOX
[22] at a sampling rate of 400 Hz, and synchronized acoustic
data at a sampling rate of 22,050 Hz. All speakers provided
written informed consent and the protocol was approved by the
Medical Ethical Review Board of the University of Gronin-
gen (NL79242.042.21). The dataset contains words in carrier
phrases and sentences that contain the phonemes of Dutch with
their respective distribution. We placed five sensors following
the sensor adhesion procedure specified in [6]. Specifically,
we placed two tongue sensors: the TT sensor was placed 1
cm behind the anatomical tip whereas the tongue back sensor
was placed at the /k/ constriction. One sensor was placed on
the lower incisor to track jaw movements and two sensors were
placed on the vermillion border of the lower and upper lips.

For both English and Dutch EMA data, we consider the sen-
sor’s movement at the midsagittal plane in the anterioposterior
and vertical direction (x and y-axis, respectively).

2.2. Speech SSL models

Wav2vec 2.0 is one of the best-performing acoustic pre-trained
models, trained with raw waveforms as input using CNN and
transformer-based networks and a contrastive loss. Previous
study indicated that wav2vec 2.0-based speech representations
were able to effectively recover articulatory data [23].

In this study, we select seven wav2vec 2.0 (w2v2) pre-
trained models from Facebook’s public repository on Hugging-
face1, with different sizes, pre-training data, and fine-tuning
data for representation extraction. The w2v2-base and w2v2-
large models share the same pre-training data, which is 960h
English speech from LibriSpeech [24], while the MMS (mas-
sively multilingual speech) models [25] are all pre-trained using
a combination of several datasets containing 491kh of speech
data covering 1,406 languages in total. The mms-1b model
was further fine-tuned using MMS-lab, which contains 44.7kh
of labeled speech in 1,107 languages. Adapter modules were
introduced for ASR fine-tuning, with different sets of adapter
weights trained specifically for each language. For more details,
please refer to [25]. In this study, we use the fine-tuned model
with either an English or a Dutch adapter, which are dubbed
mms-1b-eng and mms-1b-nld, respectively. An overview of the
SSL models is provided in Table 1.

1https://huggingface.co/facebook

Table 1: Comparison of SSL models. The mms-1b-eng
and mms-1b-nld models are different in their specification of
language-specific adapter modules.

Model Dim Layer Pre-train Fine-tune

w2v2-base 768 12
Libri-
speech

-
w2v2-base-ft 768 12 Librispeech
w2v2-large 1024 24 -
w2v2-large-ft 1024 24 Librispeech

mms-300m 1024 24 491kh,
1406

languages

-
mms-1b 1280 48 -
mms-1b-eng 1280 48 MMS-lab
mms-1b-nld 1280 48 MMS-lab

2.3. Speaker-independent AAI systems

The pipeline of our speaker-independent AAI systems is shown
in Figure 1. The acoustic signals are first preprocessed to extract
SSL or MFCC (as a baseline) features. The extracted features
are then fed into a BLSTM network to predict EMA trajectories.
The detailed process of data preprocessing, model training, and
evaluation is described below.

Figure 1: Pipleline of our AAI systems.

2.3.1. Data Preprocessing

The EMA data is first passed through a Butterworth low-pass
filter of 10 Hz, and then z-scored within each utterance. The
English and Dutch acoustic data are both downsampled to 16
kHz, and silent segments are removed from the data before fea-
ture extraction. In addition, we select MFCC as the baseline
acoustic feature for comparison with the SSL representations.
The 40-dim MFCCs are extracted using a 25 ms windows with
a 10 ms shift. The EMA data is downsampled before training
the AAI model to be aligned with the sampling rate of each
acoustic feature, which is 100 Hz for the MFCC features and
50 Hz for the SSL representations.

2.3.2. Model Training and Evaluation

AAI is a time-related task, where the prediction of each articula-
tory movement is correlated with previous and following move-
ments. Bidirectional Long Short-term Memory (BLSTM) has
been shown to be a useful neural network for the AAI task, as
it can learn proper temporal correlations of the corresponding
contexts for predicting smooth articulatory trajectories [26, 27].
Specifically, our network architecture is based on the best ar-
chitecture in [26], which consists of a fully-connected layer fol-
lowed by two BLSTM layers with 150 hidden states. The final
layer is another fully connected layer which outputs the EMA
trajectories. The model thus comprises about 1.1 million pa-
rameters. The model is initialized using PyTorch’s default ini-
tialization method, optimized using the root mean square error



Table 2: Best layers per model based on six-fold cross-
validation. The total nr. of layers is added between parentheses.

Model Best layer Model Best layer

w2v2-base 10 (12) mms-300m 15 (24)
w2v2-base-ft 10 (12) mms-1b 36 (48)
w2v2-large 17 (24) mms-eng 28 (48)
w2v2-large-ft 11 (24) mms-nld 29 (48)

(RMSE) loss and Adam optimizer, with a batch size of 64 and a
learning rate of 0.0001. We used an NVIDIA Tesla A100 80GB
PCIe GPU, with an average runtime of approximately 0.5 hours
for training each model.2

To train speaker-independent AAI systems, we exclude two
speakers, F04 and M04, from the HPRC dataset for model test-
ing. For model comparison, early stopping, and hyperparameter
selection, we employ a six-fold cross-validation methodology.
Among the six remaining speakers from the HPRC dataset, five
are allocated to the training set, and one is reserved for valida-
tion in each fold. Subsequently, the evaluation result on each
test set is averaged across six folds to provide a comprehensive
assessment. The AAI performance is evaluated using the Pear-
son Correlation Coefficient (PCC) between the ground truth ar-
ticulatory data and the predicted trajectories, averaged over each
utterance and each dimension. For the English data, the PCC is
averaged over the 12-dimensional EMA data. For the Dutch
EMA data, since we collected data of only two sensors on the
tongue, we disregard the prediction results of the English model
in the TR dimension and compute the average PCC over the re-
maining 10 dimensions of data.3

3. Results and Discussion
3.1. Layer-wise analysis of SSL representations

Previous research on utilizing SSL representations to enhance
AAI performance typically selects the last layer of the model as
input features [16, 17, 18]. However, recent studies on layer-
wise analysis of SSL models in speech-related tasks have found
that this is often not the optimal choice [20, 23]. Based on six-
fold cross-validation, we chose the layers with the highest PCCs
for each SSL model (see Table 2).

We observe similar trends of the PCC pattern for each
model: PCCs increase rapidly from the intial layers, stabilize
and peak around the middle-to-later layers, then decrease be-
fore the final three-to-four layers (see Figure 2). Our experi-
ments suggest that the average best layer is not the final layer
(cf. [20, 23]), but can be found around two thirds of the total
number of layers.

3.2. Comparison across input features and test languages

The PCC results of AAI models trained on the English dataset
using different input features for predicting English and Dutch
test data are shown in Table 3. Instead of using a model trained
on all six speakers, we use the six cross-validation models for
each input feature (each trained on five speakers) to evaluate
the performance on the held-out test set for both English and

2Code for feature extraction and model training can be found at
https://github.com/haoyunlf/aai

3Through preliminary experiments, we found that the TB sensor
in the HPRC dataset is closer to the tongue back sensor in our Dutch
dataset than the TR sensor.

Figure 2: Layer-wise PCCs based on six-fold cross-validation
of base models (top left), large models (top right) and huge
models (bottom). Dashed vertical lines denote optimal layers
for each feature. Layer-0 is the output of CNN encoder.

Table 3: PCC results for each input feature on English and
Dutch test sets. Average and 95% confidence intervals of PCCs
for each input feature were computed over the prediction by
six AAI models trained with six-fold cross-validation. Relative
drop denotes the relative drop of average PCC from matched
language (English) to non-matched language (Dutch).

Feature PCC English PCC Dutch Relative drop

MFCC 0.683 ±0.007 0.330 ±0.018 51.7%

w2v2-base 0.781 ±0.006 0.484 ±0.010 38.0%
w2v2-base-ft 0.779 ±0.005 0.410 ±0.024 47.3%
w2v2-large 0.793 ±0.004 0.526 ±0.007 33.7%
w2v2-large-ft 0.786 ±0.005 0.488 ±0.007 37.9%

mms-300m 0.795 ±0.004 0.553 ±0.012 30.4%
mms-1b 0.796 ±0.004 0.564 ±0.012 29.2%
mms-1b-eng 0.794 ±0.003 0.506 ±0.011 36.2%
mms-1b-nld 0.793 ±0.002 0.502 ±0.020 36.8%

Dutch. Consequently, average and 95% confidence intervals of
PCCs can be computed, which provides information about the
robustness of the results. Furthermore, the relative performance
drop, indicating the decrease in PCC from the matched English
test set to the non-matching Dutch test set, is displayed in the
last column of Table 3. Note that the optimal layers per model
where selected using six-fold cross-validation when being eval-
uated on the single held-out speaker (not the test set).

MFCC vs SSL The observed pattern is similar for both test
sets. All SSL features significantly outperform MFCC features.
This indicates that SSL models have learned more effective in-
formation about speech articulation. For both test sets, mms-
1b performs best, followed by mms-300m. The relative perfor-
mance drop for the mismatched Dutch test set also decreased to
less than 30%.

Capacity When considering the impact of model size on
AAI performance, we observe that the w2v2-large outperforms
w2v2-base, and mms-1b outperforms mms-300m. This sug-
gests that increasing the model capacity is an effective way
to better learn articulatory representations, consistent with the
findings of [23].

Pre-training To assess the influence of model pre-training
data on AAI performance, we compare w2v2-large and mms-



Figure 3: PCC values for each articulator, predicted using mms-
1b features for English and Dutch test sets. For TR, there are
only predictions for English, as we only collected data for two
sensors on the tongue for Dutch EMA data.

300m features which share the same number of parameters but
differ in their training data. The results indicate that mms-300m
performs considerably better, and shows that more acoustic data
with more languages in the pre-training stage also facilitate the
model in learning articulatory representations.

Fine-tuning When comparing the impact of fine-tuning data,
we found that all fine-tuned models (w2v2-base-ft, w2v2-large-
ft, mms-1b-eng , and mms-1b-nl) perform worse than their non-
fine-tuned counterparts, regardless of language. This finding
therefore contradicts the findings of Cho and collegues [23]. In
our (cross-speaker) evaluation procedure, fine-tuning on ASR
does not help the model to better learn articulatory represen-
tations, even when the fine-tuning language matches the AAI
target language. This could be due to the training objective
of ASR, which prioritizes differences between phonemes while
overlooking variations within phoneme categories. Instead, the
objective of AAI requires models to predict finer phonetic vari-
ations for each phoneme. This finding is particularly meaning-
ful for low-resource languages, as other methods besides fine-
tuning on an ASR task should be used to better utilize (limited)
available data for improving AAI performance.

3.3. Comparison across articulatory sensors

Figure 3 illustrates the performance for each articulatory sensor
predicted by the model using the best (mms-1b) features. This
graph visualizes that for English the predictions for tongue sen-
sors (TT, TB, TR) are better than those for other sensors. This
trend is consistent with the findings obtained by [12, 16, 17],
but differs from those reported in [23]. This difference could
be caused by the use of different corpora, a limited number of
speakers, and a many-to-one correspondence between articula-
tory configurations and resulting acoustic output. When the test
data is in Dutch, the pattern is opposite, with predicted tongue
sensor positions being inferior to those for lip and lower incisor
sensors. This may be due to the tongue, being the primary active
articulator, requiring more delicate control to produce nuanced
speech differences than is required for the movement of lips and
jaw. As a consequence, a greater mismatch between acoustics
and tongue movement compared to jaw and lip movement may
be expected in a cross-language setting. An example of the tar-
get and predicted trajectories for each language (see Figure 4)
also shows that predictions for the Dutch tongue sensors shows
a greater deviation from the targets compared to English.

(a) English utterance ‘The birch canoe slid on the smooth planks’, produced
by speaker F04.

(b) Dutch utterance ‘hij heeft tamme baat gezegd’ (he has said tame benefit),
produced by speaker S01.

Figure 4: Examples of target and predicted articulatory trajec-
tories by using mms-1b input features.

4. Conclusion
This study is the first to investigate the effectiveness of SSL
speech representations for cross-lingual AAI. Based on experi-
ments with English training data and testing on (unseen) Dutch
articulatory data, we found that using the best-performing SSL
features reduces the performance drop to less than 30% (RQ1).
Furthermore, our cross-lingual performance (PCC of 0.564)
represents a 9.6% improvement over the 0.51 reported in the
only other study on Dutch AAI [12]. Additionally, we found
that increasing model size, selecting appropriate intermediate
layers, and including more pre-training data may help improve
AAI performance (RQ2). Fine-tuning the SSL model on an
ASR task reduced the performance of AAI, however.

Limitations A limitation of this study is that since the two
languages were collected by different labs using different EMA
devices (the NDI Vox is more precise than the NDI Wave; [22])
and slightly different sensor placement, we are not able to dis-
entangle the reduction in performance due to a different native
language versus using a different articulatory corpus. Future
research therefore ideally would compare cross-language AAI
performance in a single dataset containing speakers of multiple
languages.

Future work As we have achieved promising results in cross-
lingual AAI by selecting appropriate SSL representations with
a simple BLSTM network, future studies should explore fur-
ther enhancement of cross-lingual AAI by integrating SSL with
more complex networks such as transformer [16] or other tech-
niques such as multi-task learning [28]. Our ultimate goal is to
be able to predict accurate articulatory trajectories from acous-
tics for any unseen language or speaker. Such a system can then
be used to generate additional articulatory features on the basis
of acoustics which may help in enhancing performance in vari-
ous speech-related tasks, such as low-resource ASR [29, 30].



5. Acknowledgments
This work was partly supported by the China Scholarship Coun-
cil (CSC). We are also grateful to the ILSE project of the Cen-
ter for Information Technology, University of Groningen, for
providing access to the computing resources utilized in this re-
search.

6. References
[1] V. Mitra, H. Nam, C. Y. Espy-Wilson, E. Saltzman, and L. Gold-

stein, “Articulatory information for noise robust speech recogni-
tion,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 19, no. 7, pp. 1913–1924, 2010.

[2] P. K. Ghosh and S. S. Narayanan, “A subject-independent
acoustic-to-articulatory inversion,” in 2011 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 4624–4627.

[3] Z.-H. Ling, K. Richmond, J. Yamagishi, and R.-H. Wang, “In-
tegrating articulatory features into hmm-based parametric speech
synthesis,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 17, no. 6, pp. 1171–1185, 2009.

[4] A. Suemitsu, J. Dang, T. Ito, and M. Tiede, “A real-time articula-
tory visual feedback approach with target presentation for second
language pronunciation learning,” The Journal of the Acoustical
Society of America, vol. 138, no. 4, pp. EL382–EL387, 2015.

[5] O. Engwall, O. Bälter, A.-M. Öster, and H. Kjellström, “Design-
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