

Ze is niet meer
Waar ze was,
Maar altijd

Waar wij zijn.

In liefdevolle herinnering aan Ankie Wieling

* 16 juli 1950
† 31 december 2004

Abstract

Contemporary Dutch dialects are compared using the most recent Dutch dialect source
available: the Goeman-Taeldeman-Van Reenen-Project data (GTRP). The GTRP consists
of phonetic transcriptions of 1876 items for 613 localities in the Netherlands and Belgium
gathered during the period 1980 – 1995. In this study three different approaches will be
taken to obtain dialect distances used in dialect comparison.

In the first approach the GTRP is analysed using the Levenshtein distance as a measure
for pronunciation difference. The dialectal situation it represents is compared to the anal-
ysis of a 350-locality sample from the Reeks Nederlands(ch)e Dialectatlassen (1925 – 1982)
studied by Heeringa (2004). Due to transcriptional differences between the Netherlandic
and Belgian GTRP data we analyse data from the two countries separately.

The second approach consists of using Pair Hidden Markov Models to automatically
obtain segment distances and to use these to improve the sequence distance measure. The
improved sequence distance measure is used in turn to obtain better dialect distances.
The results are evaluated in two ways, first via comparison to analyses obtained using
the Levenshtein distance on the same datasets and second, by comparing the quality of
the induced vowel distances to acoustic differences.

In the final approach we propose two adaptations of the regular Levenshtein distance
algorithm based on psycholinguistic work on spoken word recognition. The first adap-
tation follows the idea of the Cohort Model which assumes that the word-initial part is
more important for word recognition than the word-final part. The second adaptation
follows the idea that stressed syllables contain more information and are more important
for word recognition than unstressed syllables. Both algorithms are evaluated by com-
paring them to the results using the regular Levenshtein distance on several data sets.

Samenvatting

Nederlandse dialecten worden vergeleken op basis van de meest recente dialectverzame-
ling momenteel beschikbaar: de Goeman-Taeldeman-Van Reenen-Project data (GTRP).
De GTRP bestaat uit fonetische transcripties van 1876 elementen voor 613 locaties in Ne-
derland en België verzameld gedurende de periode 1980 – 1995. In dit onderzoek worden
drie verschillende methodes gebruikt om dialectafstanden te bepalen.

In de eerste methode wordt de GTRP geanalyseerd met behulp van de Levenshtein af-
stand. De Levenshtein afstand wordt hierbij gebruikt als een maat om uitspraak ver-
schillen te meten. De resultaten worden vergeleken met eerdere resultaten (Heeringa,
2004) op basis van 350 plaatsen uit de Reeks Nederlands(ch)e Dialectatlassen (1925 – 1982).
Door transcriptieverschillen tussen de Belgische en Nederlandse GTRP data, analyseren
we de data van de twee landen afzonderlijk.

De tweede methode bestaat uit het gebruiken van Pair Hidden Markov Modellen voor
het automatisch leren van segmentsafstanden. Deze segmentsafstanden worden gebruikt
voor het bepalen van verbeterde woordafstanden die op hun beurt weer gebruikt worden
om betere dialectafstanden te bepalen. De resultaten worden op twee manieren geëva-
lueerd. Ten eerste worden de resultaten vergeleken met de resultaten die verkregen zijn
door gebruik te maken van het Levenshtein algoritme. Ten tweede wordt de kwaliteit
van de geleerde klinkerafstanden vergeleken met akoestische klinkerafstanden.

In de laatste methode worden op basis van psycholinguistisch onderzoek met betrekking
tot het begrijpen van spraak twee aangepaste versies van het Levensthein algoritme geïn-
troduceerd om dialectafstanden te meten. De eerste aanpassing volgt het idee van het Co-
hort Model. Hierin wordt verondersteld dat het initiële gedeelte van het woord belang-
rijker is bij woordherkenning dan het laatste gedeelte van het woord. De tweede aan-
passing volgt het idee dat beklemtoonde lettergrepen meer informatie bevatten dan de
onbeklemtoonde lettergrepen. Beide algoritmes worden geëvalueerd door de resultaten
te vergelijken met de resultaten van het reguliere Levenshtein algoritme voor verschil-
lende data sets.

Acknowledgements

First and foremost I would like to thank my main supervisor, John Nerbonne. He was
always ready to answer any of my questions and has been invaluable as a co-author of
the papers we have written on the basis of this research. I also am thankful for the useful
comments and questions of my second supervisor, Gerard Renardel de Lavalette.

I am grateful to Greg Kondrak of the University of Alberta for providing the original
source code of the Pair Hidden Markov Models and Fokke Dijkstra of the Donald Smits
Centre for Information Technology of the University of Groningen for assisting me in
parallelising the PairHMM source code. I am thankful to Peter Kleiweg for making the
L04 software package available which was used to obtain dialect distances using the
Levenshtein algorithm and to create the maps in my thesis. I thank the Meertens Instituut
for making the GTRP dialect data available for research and especially Boudewijn van
den Berg for answering our questions regarding this data.

I would also like to thank Therese Leinonen en Wilbert Heeringa. They were invalu-
able as co-authors of the papers we have written and cooperation with them was very
pleasant.

Last but not least, I would like to express my warm gratitude for the support of my family
and my love Aafke during this project.

Maximas tibi gratias ago!

Contents

1 Introduction 1

2 Dialect pronunciation comparison using the Levenshtein distance 7
2.1 Introduction . 7
2.2 Material . 8
2.3 Measuring linguistic distances . 12
2.4 Results . 16
2.5 Discussion . 31

3 Dialect pronunciation comparison using Pair Hidden Markov Models 35
3.1 Introduction . 35
3.2 Material . 36
3.3 The Pair Hidden Markov Model . 36
3.4 Results . 53
3.5 Discussion . 63

4 Dialect pronunciation comparison and spoken word recognition 65
4.1 Introduction . 65
4.2 Material . 66
4.3 Adapted Levenshtein distance algorithms 67
4.4 Results . 72
4.5 Discussion . 74

5 Conclusions and Future Prospects 77

List of Figures 85

List of Tables 87

1 Introduction

In the Netherlands and the northern part of Belgium (Flanders) the official language is
Dutch. However, when travelling through this area one will come across many regional
variants of the Dutch language (dialects). Dialects tend to be similar to nearby dialects,
while they are generally more dissimilar to dialects spoken in a more distant region. For
example, consider the word ‘stones’. The standard Dutch pronunciation of this word
is [sten@]. However, in the north of the Netherlands (Groningen) one will often hear
[stAin], while in the south of the Netherlands (Limburg) [stEin] can be heard. As another
example, consider the Dutch word ‘to drink’ which is pronounced as [drI Nk@]. In the
north of the Netherlands this is pronounced as [drI NPN], while the pronunciation [dRI Nk@]
in the south of the Netherlands resembles standard Dutch much more.

Although the Netherlands and the northern part of Belgium (Flanders) only cover about
60.000 square kilometres, there are a large number of dialects in that region. In 1969, Daan
and Blok published a map of the Netherlands and Flanders showing the Dutch dialect
borders. They identified 28 dialectal regions in the Dutch-speaking language area which
are shown in Figure 1.1 and Table 1.1. Their map was based on a survey of 1939 in which
people judged the similarity of nearby dialects with respect to their own dialect.

Obtaining perceptual dialect distances is a time consuming task and does not always
yield consistent results. For instance, inhabitants of region A may judge the dialect spo-
ken by inhabitants of region B much more different than the other way around. Fortu-
nately, computational methods have been developed to objectively compare dialects to
each other.

A popular method in dialectology is the Levenshtein distance, which was introduced by
Kessler (1995) as a tool to computationally compare dialects. The Levenshtein distance
between two strings is determined by counting the number of edit operations (i.e. in-
sertions, deletions and substitutions) needed to transform one string into the other. For
example, the Levenshtein distance between [sten@] and [stEin] is 3 as illustrated below.

sten@ subst. e/E 1
stEn@ insert i 1
stEin@ delete @ 1
stEin

3

2 Introduction

Figure 1.1. Locations of the 28 dialectal groups as distinguished in the map of Daan and Blok
(1969). Provincial borders are represented by thinner lines and dialect borders by thicker
ones. The numbers are explained in Table 1.1. Diamonds represent dialect islands. The black
diamonds represent Frisian cities, which belong to group 28. The white diamond represents
Appelscha, where both the dialect of group 22 and group 27 is spoken. The grey diamond
represents Vriezenveen which contrasts strongly with its surroundings. Image courtesy of
Heeringa (2004).

3

1 Dialect of Zuid-Holland
2 Dialect of Kennemerland
3 Dialect of Waterland
4 Dialect of Zaan region
5 Dialect of northern Noord-Holland
6 Dialect of the province of Utrecht and the Alblasserwaard region
7 Dialect of Zeeland
8 Dialect of region between Holland and Brabant dialects
9 Dialect of West Flanders and Zeeuws-Vlaanderen
10 Dialect of region between West and East Flanders dialects
11 Dialect of East Flanders
12 Dialect of region between East Flanders and Brabant dialects
13 Dialect of the river region
14 Dialect of Noord-Brabant and northern Limburg
15 Dialect of Brabant
16 Dialect of region between Brabant and Limburg dialects
17 Dialect of Limburg
18 Dialect of the Veluwe region
19 Dialect of Gelderland and western Overijssel
20 Dialect of western Twente and eastern Graafschap
21 Dialect of Twente
22 Dialect of the Stellingwerf region
23 Dialect of southern Drenthe
24 Dialect of central Drenthe
25 Dialect of Kollumerland
26 Dialect of Groningen and northern Drenthe
27 Frisian language
28 Dialects of het Bildt, Frisian cities, Midsland, and Ameland Island

Table 1.1. Dialectal regions in map of Daan and Blok (1969) shown in Figure 1.1.

The corresponding alignment is:

s t e n @
s t E i n

1 1 1

The Levenshtein distance has successfully been used to measure linguistic distances in
Irish (Kessler, 1995), Dutch (e.g., Nerbonne et al., 1996; Heeringa, 2004), Sardinian (Bolog-
nesi and Heeringa, 2005), Norwegian (e.g., Heeringa, 2004) and German dialects (Ner-
bonne and Siedle, 2005). Furthermore, the Levenshtein distance has been shown to yield
results that are consistent (Cronbach’s α = 0.99) and valid when compared to dialect

4 Introduction

speakers judgements of similarity (r ≈ 0.7; Heeringa et al., 2006). A detailed explanation
of the Levenshtein distance can be found in Section 2.3.1.

A conditio sine qua non for computational dialect comparison, is the availability of dialectal
material in digital form. Unfortunately these digital datasets are relatively scarce. The
Reeks Nederlands(ch)e Dialectatlassen (RND; Blancquaert and Peé, 1982) created during the
period 1925 – 1982 was the first broad-coverage Dutch dialect source available and was
digitised in part by Heeringa (2001) to make computational dialect comparison possible.
In 2003 another digital Dutch dialect source became available, the Goeman-Taeldeman-
Van Reenen-Project data (GTRP; Goeman and Taeldeman, 1996; Van den Berg, 2003). The
GTRP is an enormous collection of Dutch dialect data, including transcriptions of over
1800 items from over 600 localities, all collected over a relatively brief, and therefore,
unproblematic time interval (15 years, 1980 – 1995). The GTRP complements the RND as
a more recent and temporally more limited set (see also Taeldeman and Verleyen, 1999).

Heeringa (2004; Chapter 9) provides an in-depth aggregate analysis of the RND, visualis-
ing the dialectal situation it represents. Even though data from the GTRP has been used
in several dialect studies (e.g., Goossens et al., 1998; Goossens et al., 2000; De Schutter
et al., 2005; De Wulf et al., 2005), none of these have provided a similar, aggregate anal-
ysis of this data. Hence, the main purpose of this thesis is to provide the first aggregate
analysis of the GTRP data.

We will use the regular Levenshtein distance to analyse the GTRP data in the same way
as it was done for the RND by Heeringa (2004). Because language changes over time,
for instance due to migration (Kerswill, 2006), we will compare the dialectal situation
it represents to the RND, in particular to the 350-locality sample studied by Heeringa
(2004), identifying areas of convergence and divergence. The results of the aggregate
analysis of the GTRP and comparison to the RND are presented in Chapter 2.

The Levenshtein distance regards segments in a binary fashion, either as same or dif-
ferent. This is a clear simplification; not all sounds are equally different. For instance,
the sounds /p/ and /b/ sound more similar than the sounds /p/ and /m/. Although
there have been many attempts to incorporate more sensitive segment differences, they
failed to show significant improvement (e.g., Heeringa and Braun, 2003; Heeringa, 2004).
Instead of using segment distances as these are (incompletely) suggested by phonetic
or phonological theory, we can also attempt to acquire these automatically. In Chap-
ter 3, we will obtain these segment distances by training Pair Hidden Markov Models
(PairHMMs). The PairHMM is special version of a Hidden Markov Model and was in-
troduced to language studies by Mackay and Kondrak (2005). They used the PairHMM
to calculate similarity scores for word pairs in orthographic form. We will investigate if
using PairHMMs to obtain dialect distances in the GTRP improves the results as com-
pared to the regular Levenshtein distance approach. Additionally we will evaluate the
quality of the trained segment distances by comparing them to acoustic differences.

Inspired by psycholinguistic work on spoken word recognition which states that the im-
portance of a sound (segment) depends on its position within a word, we will investigate
a novel position-dependent approach to obtain dialect distances. In Chapter 4 we will

5

propose two adaptations of the regular Levenshtein distance algorithm based on phono-
logical theory. The first adaptation follows the idea of the Cohort Model (Marslen-Wilson
and Welsh, 1978; Marslen-Wilson, 1987) which assumes that the word-initial part is more
important for word recognition than the word-final part. This can be modelled by assign-
ing edit operations at the start of the alignment a higher cost than edit operations at the
end of the alignment, for example:

s t e n @
s t E i n

4 3 1

The second adaptation follows the idea that stressed syllables contain more informa-
tion and are more important for word recognition than unstressed syllables (Altman and
Carter, 1989). This can be modelled by giving edit operations involving stressed syllables
a higher cost than edit operations involving unstressed syllables.

We will evaluate the results of the position-dependent approach by comparing them to
results obtained using the regular Levenshtein algorithm on the GTRP data as well as on
a Norwegian dataset for which perceptual dialect distances are available.

This thesis will be concluded in Chapter 5 with a general discussion of the results and
some suggestions for further research.

6 Introduction

2 Dialect pronunciation comparison using
the Levenshtein distance

Abstract∗

Contemporary Dutch dialects are compared using the Levenshtein distance, a mea-
sure of pronunciation difference. The material consists of data from the most recent
Dutch dialect source available: the Goeman-Taeldeman-Van Reenen-Project (GTRP).
This data consists of transcriptions of 1876 items for 613 localities in the Netherlands
and Belgium gathered during the period 1980 – 1995. In addition to presenting the
analysis of the GTRP, we compare the dialectal situation it represents to the Reeks
Nederlands(ch)e Dialectatlassen (RND), in particular to the 350-locality sample
studied by Heeringa (2004), noting areas of convergence and divergence. Although
it was not the purpose of this research to criticise the GTRP, we nonetheless note that
transcriptions from Belgian localities differ substantially from the transcriptions of
localities in the Netherlands, impeding the comparison between the varieties of the
two different countries. We therefore analyse the developments in the two countries
separately.

2.1 Introduction

The Goeman-Taeldeman-Van Reenen-Project (GTRP; Goeman and Taeldeman, 1996) is an
enormous collection of data collected from the Dutch dialects, including transcriptions of
over 1800 items from over 600 localities, all collected over a relatively brief, and therefore,
unproblematic time interval (15 years, 1980 – 1995). The GTRP is the first large-scale
collection of Dutch dialect data since Blancquaert and Peé’s Reeks Nederlands(ch)e Dialect-
atlassen (RND; 1925 – 1982), and complements it as a more recent and temporally more
limited set. The GTRP provides a rich and attractive database, designed by the leading
experts in Dutch dialectology, who likewise collaborated in obtaining, transcribing, and
organising its information. The GTRP rivals the RND in being fully available digitally
(Van den Berg, 2003) and being designed with an eye toward contemporary questions in
phonology, morphology and variationist linguistics (Van Oostendorp, 2007). We present
the GTRP and the RND in more detail in Section 2.2.
∗A slightly different form of this text was accepted to appear in Taal en Tongval (2007) as: M. Wieling,

W. Heeringa, and J. Nerbonne. An Aggregate Analysis of Pronunciation in the Goeman-Taeldeman-Van
Reenen-Project Data.

8 Dialect pronunciation comparison using the Levenshtein distance

The present chapter provides an aggregate analysis of the pronunciation variation in this
collection, using the same techniques for analysis which Nerbonne et al. (1996) first ap-
plied, and which Heeringa (2004) lays out in full detail. The aggregate analysis pro-
ceeds from a word-by-word measurement of pronunciation differences, which has been
shown to provide consistent probes into dialectal relations, and which correlates strongly
(r > 0.7) with lay dialect speakers’ intuitions about the degree to which non-local dialects
sound "remote" or "different" (see Heeringa, 2004: Chapter 7; and Heeringa et al., 2006
for rigorous discussions of the consistency and validity of the measures). The aggregate
analysis differs from analyses based on a small number of linguistic variables in provid-
ing a global view of the relations among varieties, allowing more abstract questions to
be posed about these relations. We sketch the necessary technical background for the
measurement of pronunciation differences in Section 2.3 below.

For various technical reasons, we restrict our analysis to 562 items in the GTRP, which
is nonetheless notably large compared to other analyses. We present the results of this
analysis in Sections 2.4.1 and 2.4.2 below.

A second, related goal of this chapter is to examine what has changed between the time
of the RND and that of the GTRP. For this purpose we focus our attention on 224 localities
which are common to the GTRP and the RND varieties analysed by Heeringa (2004). To
allow interpretation to be as exact as possible, we also focused on the 59 words which
were common to the GTRP and the RND. Since the two projects differed in methodolo-
gies, especially transcription practice, we approach the comparison indirectly, via regres-
sion analyses. We are able to identify several areas in which dialects are converging (rel-
atively), and likewise several in which they are diverging. The results of the comparison
are the subject of Section 2.4.3 below.

It was not originally a goal of the work reported here to examine the GTRP with respect to
its selection and transcription practices, but several preliminary results indicated that the
Belgian and the Dutch collaborators had not been optimally successful in unifying these
practices. We follow these indications up, and conclude in Section 2.4.1 that caution is
needed in interpreting aggregate results unless one separates Dutch and Belgian mate-
rial. We further suggest that these problems are likely to infect other, non-aggregating
approaches as well. At the end of Section 2.4.2 we discuss some clues that fieldworker
and transcription practices in the Netherlands may be confounding analyses to some de-
gree. Also Hinskens and Van Oostendorp (2006) reported transcriber effects in the GTRP
data.

2.2 Material

In this chapter two Dutch dialect data sources are used: data from the Goeman-Taelde-
man-Van Reenen-Project (GTRP; Goeman and Taeldeman, 1996) and data from the Reeks
Nederlands(ch)e Dialectatlassen (RND; Blancquaert and Peé, 1925 – 1982) as used by Hee-
ringa (2004).

2.2 Material 9

2.2.1 GTRP

The GTRP consists of digital transcriptions for 613 dialect varieties in the Netherlands
(424 varieties) and Belgium (189 varieties; see Figure 2.1 for the geographical distribu-
tion). All data was gathered during the period 1980 – 1995, making it the most recent
broad-coverage Dutch dialect data source available. The GTRP is moreover available
digitally, making it especially useful for research. For every variety, a maximum of 1876
items was narrowly transcribed according to the International Phonetic Alphabet. The
items consisted of separate words and word groups, including nominals, adjectives and
nouns. A more specific overview of the items is given in Taeldeman and Verleyen (1999).

The recordings and transcriptions of the GTRP were made by 25 collaborators, but more
than 40% of all data was transcribed by only two individuals who created reliable tran-
scriptions (Goeman, 1999). In most cases there were multiple transcribers operating in
a single region, ranging from 1 (Drenthe) to 13 (Zuid-Holland). In general the dialectal
data of one variety was based on a single dialect speaker.

Our analyses are conducted on a subset of the GTRP items. Because the Levenshtein
distance is used to obtain dialect distances, we only take single words into account (like
Heeringa, 2004). Unfortunately, word boundaries are not always clearly identified in the
transcriptions (primarily for Belgian dialect varieties), making segmentation very hard.
For this reason, we restrict our subset to items consisting of a single word. Because the
singular nouns are (sometimes, but not always) preceded by an article (‘n) these will not
be included. The first-person plural is the only verb form not preceded by a pronoun
and therefore the only verb form which is included. Finally, no items are included where
multiple lexemes are possible.

The GTRP was compiled with a view to documenting both phonological and morpho-
logical variation (De Schutter et al., 2005). Because our purpose here is the analysis of
variation in pronunciation, we ignore many items in the GTRP whose primary purpose
was presumably the documentation of morphological variation. If we had included this
material directly, the measurements would have confounded pronunciation and mor-
phological variation. Differently inflected forms of one word (e.g., base and comparative
forms of an adjective) are very similar and therefore are not both selected in the subset to
keep the distance measurement focused on pronunciation.

The following forms are included in the subset:

• The plural nouns, but not the diminutive nouns (the singular nouns are preceded
by an article and therefore not included)

• The base forms of the adjectives instead of the comparative forms

• The first-person plural verbs (the transcriptions of other verb forms include pro-
nouns and were therefore not included)

The complete list of the 562 remaining items used in our analysis is displayed in Table 2.1.

10 Dialect pronunciation comparison using the Levenshtein distance

Figure 2.1. The geographic distribution of the 613 GTRP localities. The 224 localities marked
with a circle appear both in the GTRP and in the 360-element sample of the RND studied by
Heeringa (2004). Localities marked by a ‘+’ occur only in the GTRP. See the text for further
remarks.

2.2 Material 11

aarde daken gebruiken juist leren over schuw treffen wegen
aardig damp geel kaas leugens paarden simpel treinen wegen
acht dansen gehad kaf leunen padden slaan trouwen weinig
achter darmen geld kalm leven paden slapen tussen weken
adem deeg geloven kalveren lezen Pasen slecht twaalf wensen
af denken genoeg kamers licht pekel slijm twee werken
anders derde geraken kammen (nom) liederen pellen slijpen tweede weten
appels deuren gerst kammen (vb) liggen peper slim twijfel wieden
arm dienen geven kanten lijken peren sluiten twintig wijd
armen diep geweest karren likken piepen smal uilen wijn
auto’s dieven gewoon kasten lomp pijpen smeden vader wijven
baarden dik gisteren katten lopen planken smelten vallen wild
bakken dingen glazen kennen lucht pleinen smeren vals willen
barsten dinsdag god kermis lui ploegen (wrktg) sneeuw vangen winnen
bedden dochters goed kersen luiden potten sneeuwen varen wippen
beenderen doeken goud kervel luisteren proeven soep vast wit
beginnen doen gouden keuren maandag proper spannen vaten woensdag
benen dol gras kiezen maanden raar sparen vechten wol
beren (wild) donder graven kijken maart raden spartelen veel wonen
best (bijw) donderdag grijs kinderen magen recht spelden veertig woorden
beurzen donker groen klaver mager redden spelen ver worden
beven doof grof kleden maken regen sport (spel) verf wrijven
bezems dooien groot klederen marmer rekken spreken vers zacht
bezig door haast klein maten ribben springen vesten zakken
bidden dopen haastig kloppen mazelen riet spuiten vet zand
bier dorsen haken kloppen meer rijden staan veulens zaterdag
bij (vz) dorst halen knechten mei rijk stallen vier zee
bijen draaien half kneden meid rijp stampen vieren zeep
bijten draden handen knieën melk rijst steken vijf zeggen
binden dragen hanen koeien menen ringen stelen vijftig zeilen
bitter dreigen hangen koel merg roepen stenen vijgen zeker
bladen drie hard koken metselen roeren sterven vinden zelf
bladeren drinken haver komen meubels rogge stijf vingers zes
blauw dromen hebben kommen missen rokken stil vissen zetten
blazen droog heel konijnen modder rond stoelen vlaggen zeven
bleek dubbel heet koorts moe rondes stof (huisvuil) vlas zeventig
blijven duiven heffen kopen moes rood stokken vlees ziek
blind duizend heilig koper moeten rook stom vliegen ziektes
bloeden dun helpen kort mogelijk ruiken stout vloeken zien
bloeien durven hemden koud mogen runderen straten vlooien zijn
blond duur hemel kousen morgen (demain) ruzies strepen voegen zilveren
blozen duwen hengsten kraken mossels sap strooien voelen zitten
bokken dweilen heren kramp muizen saus sturen (zenden) voeten zoeken
bomen echt heten kreupel muren schade suiker vogels zoet
bonen eeuwen hier krijgen naalden schapen taai vol zondag
boren eieren hoeden krimpen nat schaven taarten volgen zonder
boter eigen hoesten krom negen scheef tafels volk zonen
bouwen einde hol kruipen negers scheel takken voor zorgen
boven elf holen kwaad nieuw scheiden tam vragen zout
braaf engelen honden laag noemen schepen tanden vreemd zouten
braden enkel honger laat nog scheppen tangen vriezen zuchten
branden eten hoog lachen noorden scheren tantes vrij zuigen
breed ezels hooi lam noten scherp tarwe vrijdag zuur
breien fel hoop (espoir) lammeren nu schieten tegen vrijen zwaar
breken fijn hopen lampen ogen schimmel tellen vroeg zwart
brengen flauw horen lang om schoenen temmen vuil zwellen
broden flessen horens lastig ons scholen tenen vuur zwemmen
broeken fruit houden laten oogst schoon tien wachten zwijgen
broers gaan huizen latten ook schrijven timmeren wafels
bruin gaarne jagen leden oosten schudden torens warm breder
buigen gal jeuken ledig op schuiven traag wassen
buiten ganzen jong leem open schuld tralies weer
dagen gapen jongen leggen oud schuren trams weg

Table 2.1. List of all 562 words in the GTRP subset. The 59 words in boldface are used for
RND-GTRP comparison (see Section 2.4.3). The word breder is included in the set used for
comparison with the RND, but not in the base subset of 562 words (due to the presence of
breed).

12 Dialect pronunciation comparison using the Levenshtein distance

2.2.2 RND

We will compare the results obtained on the basis of the GTRP with results obtained on
the basis of an earlier data source, the Reeks Nederlands(ch)e Dialectatlassen (RND). The
RND is a series of atlases covering the Dutch language area. The Dutch area comprises
the Netherlands, the northern part of Belgium (Flanders), a smaller northwestern part of
France and the German county Bentheim. The RND contains 1956 varieties, which can
be found in 16 volumes. The first volume appeared in 1925, the last in 1982. The first
recordings were made in 1922, the last ones in 1975. E. Blancquaert initiated the project.
When Blancquaert passed away before all the volumes were finished, the project was
finished under the direction of W. Peé. In the RND, the same 141 sentences are translated
and transcribed in phonetic script for each dialect.

The recordings and transcriptions of the RND were made by 16 collaborators, who mostly
restricted their activities to a single region (Heeringa, 2004). For every variety, material
was gathered from multiple dialect speakers.

In 2001 the RND material was digitised in part. Since digitising the phonetic texts is time-
consuming, a selection of 360 dialects was made and for each dialect the same 125 words
were selected from the text. The words represent (nearly) all the vowels (monophthongs
and diphthongs) and consonants. Heeringa (2001) and Heeringa (2004) describe the se-
lection of dialects and words in more detail and discuss how differences introduced by
different transcribers are processed.

Our set of 360 RND varieties and the set of 613 GTRP varieties have 224 varieties in
common. Their distribution is shown in Figure 2.1. The 125 RND words and the set of
562 GTRP words share 58 words. We added one extra word, breder ‘wider’, which was
excluded from the set of 562 GTRP words since we used no more than one morphologic
variant per item and the word breed ‘wide’ was already included. So in total we have 59
words, which are listed in boldface in Table 2.1. The comparisons between the RND and
GTRP in this chapter are based only on the 224 common varieties and the 59 common
words.

2.3 Measuring linguistic distances

In 1995 Kessler introduced the Levenshtein distance as a tool for measuring linguistic
distances between language varieties. The Levenshtein distance is a string edit distance
measure, and Kessler applied this algorithm to the comparison of Irish dialects. Later
the same technique was successfully applied to Dutch (Nerbonne et al., 1996; Heeringa,
2004: 213 – 278), Sardinian (Bolognesi and Heeringa, 2005), Norwegian (Gooskens and
Heeringa, 2004) and German (Nerbonne and Siedle, 2005).

In this chapter we use the Levenshtein distance for the measurement of pronunciation
distances. Pronunciation variation includes phonetic and morphologic variation, and

2.3 Measuring linguistic distances 13

excludes lexical variation. Below, we give a brief explanation of the methodology. For a
more extensive explanation see Heeringa (2004: 121 – 135).

The Levenshtein algorithm provides a rough, but completely consistent measure of pro-
nunciation distance. Its strength lies in the fact that it can be implemented on the com-
puter, so that large amounts of dialect material can be compared and analysed. The usage
of this computational technique enables dialectology to be based on the aggregated com-
parisons of millions of pairs of phonetic segments.

2.3.1 Levenshtein algorithm

Using the Levenshtein distance, two varieties are compared by comparing the pronunci-
ation of words in the first variety with the pronunciation of the same words in the second.
We determine how one pronunciation might be transformed into the other by inserting,
deleting or substituting sounds. Weights are assigned to these three operations. In the
simplest form of the algorithm, all operations have the same cost, e.g., 1. Assume melk
‘milk’ is pronounced as [mO@lk@] in the dialect of Veenwouden (Friesland), and as [mEl@k]
in the dialect of Delft (Zuid-Holland). Changing one pronunciation into the other can be
done as follows (ignoring suprasegmentals and diacritics):

mO@lk@ subst. O/E 1
mE@lk@ delete @ 1
mElk@ insert @ 1
mEl@k@ delete @ 1
mEl@k

4

In fact many sequence operations map [mO@lk@] to [mEl@k]. The power of the Levenshtein
algorithm is that it always finds the cost of the cheapest mapping.

A naive method to compute the Levenshtein distance is using a recursive function with
all three edit operations as illustrated in the pseudocode below. Note that INS_COST,
DEL_COST, and SUBST_COST all equal 1 for the regular Levenshtein algorithm.

LEVEN_DIST(empty_string, empty_string) := 0
LEVEN_DIST(string1, empty_string) := LENGTH(string1)
LEVEN_DIST(empty_string, string2) := LENGTH(string2)

LEVEN_DIST(string1 + finalchar1, string2 + finalchar2) :=
MIN(

LEVEN_DIST(string1, string2 + finalchar2) + INS_COST,
LEVEN_DIST(string1 + finalchar1, string2) + DEL_COST,
IF finalchar1 = finalchar2 THEN

LEVEN_DIST(string1, string2) // no cost
ELSE

LEVEN_DIST(string1, string2) + SUBST_COST
END

)

14 Dialect pronunciation comparison using the Levenshtein distance

This naive computation yields a time complexity of O(3n), where n is the length of an
input string. The exponential time complexity is caused by the large number of dupli-
cate computations, e.g. the cost of substituting the first characters will be calculated very
often.

Fortunately, this problem can be solved by storing intermediate results in a two dimen-
sional matrix instead of calculating them again and again. This approach is called a
dynamic programming approach and is illustrated below. The improved algorithm has
a time complexity of only O(n2).

LEVEN_TABLE(0,0) := 0

FOR i := 1 TO LENGTH(string1)
LEVEN_TABLE(i,0) := i

END

FOR j := 1 TO LENGTH(string2)
LEVEN_TABLE(0,j) := j

END

FOR i := 1 TO LENGTH(string1) DO
FOR j := 1 TO LENGTH(string2) DO

LEVEN_TABLE(i,j) :=
MIN(

LEVEN_TABLE(i-1, j) + INS_COST,
LEVEN_TABLE(i, j-1) + DEL_COST,
IF finalchar1 = finalchar2 THEN

LEVEN_TABLE(i-1, j-1) // no cost
ELSE

LEVEN_TABLE(i-1, j-1) + SUBST_COST
END

)
END

END

LEVEN_DIST := LEVEN_TABLE(LENGTH(string1),
LENGTH(string2))

An example of this approach for the words [mO@lk@] and [mEl@k] is illustrated in the table
below. To find the sequence of edit operations which has the lowest cost, traverse from
the top-left to the bottom-right by going down (insertion: cost must be increased by 1),
right (deletion: cost must be increased by 1) or down-right (same symbol substitution:
cost must remain equal; different symbol substitution: cost must be increased by 1). The
initial value is 0 (top-left) and the Levenshtein distance equals the value in the bottom-
right field of the table (i.e. 4). If it is not possible in a certain field to go down, right or
down-right while increasing the value from this field with 0 (same symbol substitution)
or 1 (other cases) that field is not part of the path yielding the Levenshtein distance. One
possible path yielding the Levenshtein distance is marked in bold face in the table below.

2.3 Measuring linguistic distances 15

m O @ l k @
0 1 2 3 4 5 6

m 1 0 1 2 3 4 5
E 2 1 1 2 3 4 5
l 3 2 2 2 2 3 4
@ 4 3 3 2 3 3 3
k 5 4 4 3 3 3 4

To deal with syllabicity, the Levenshtein algorithm is adapted so that only vowels may
match with vowels, and consonants with consonants, with several special exceptions: [j]
and [w] may match with vowels, [i] and [u] with consonants, and central vowels (in our
research only the schwa) with sonorants. So the [i], [u], [j] and [w] align with anything,
the [@] with syllabic (sonorant) consonants, but otherwise vowels align with vowels and
consonants with consonants. In this way unlikely matches (e.g., a [p] with an [a]) are
prevented. In our example we thus have the following alignment (also shown in the
previous table illustrating the Levenshtein algorithm):

m O @ l k @
m E l @ k

1 1 1 1

In earlier work we divided the sum of the operations by the length of the alignment. This
normalises scores so that longer words do not count more heavily than shorter ones, re-
flecting the status of words as linguistic units. However, Heeringa et al. (2006) showed
that results based on raw Levenshtein distances approximate dialect differences as per-
ceived by the dialect speakers better than results based on normalised Levenshtein dis-
tances. Therefore we do not normalise the Levenshtein distances in this chapter but use
the raw distances, i.e. distances which give us the sum of the operations needed to trans-
form one pronunciation into another, with no transformation for length.

2.3.2 Operation weights

The example above is based on a notion of phonetic distance in which phonetic overlap
is binary: non-identical phones contribute to phonetic distance, identical ones do not.
Thus the pair [i, 6] counts as different to the same degree as [i, I]. In earlier work we
experimented with more sensitive versions in which phones are compared on the basis
of their feature values or acoustic representations. In that way the pair [i, 6] counts as
more different than [i, I].

In a validation study Heeringa (2004) compared results of binary, feature-based and
acoustic-based versions to the results of a perception experiment carried out by Char-
lotte Gooskens. In this experiment dialect differences as perceived by Norwegian di-
alect speakers were measured. It was found that generally speaking the binary versions

16 Dialect pronunciation comparison using the Levenshtein distance

approximate perceptual distances better than the feature-based and acoustic-based ver-
sions. The fact that segments differ appears to be more important in the perception of
speakers than the degree to which segments differ. Therefore we will use the binary ver-
sion of Levenshtein distance in this chapter, as illustrated in the example in Section 2.3.1.
All substitutions, insertions and deletions have the same weight, in our example the
value 1.

2.3.3 Diacritics

We do not process suprasegmentals and diacritics. Differences between the way in which
transcribers transcribe pronunciations are found especially frequently in the use of supra-
segmentals and diacritics (Goeman, 1999). The RND transcribers, instructed by (or in the
line of) Blancquaert, may have used them differently from the GTRP transcribers. To
make the comparison between RND and GTRP results as fair as possible, we restrict our
analyses to the basic phonetic segments and ignore suprasegmentals and diacritics.

2.3.4 Dialect distances

When comparing two varieties on the basis of nw words, we analyse nw word pairs and
get nw Levenshtein distances. The dialect distance is equal to the sum of nw Levenshtein
distances divided by nw. When comparing nd varieties, the average Levenshtein dis-
tances are calculated between each pair of varieties and arranged in a matrix which has
nd rows and nd columns.

To measure the consistency (or reliability) of our data, we use Cronbach’s α (Cronbach,
1951). On the basis of variation of one single word (or item) we create a nd × nd distance
matrix. With nw words, we obtain nw distance matrices, for each word one matrix. Cron-
bach’s α is a function of the number of linguistic variables and the average inter-item cor-
relation among the variables. In our case it is a function of the number of words nw and
the average inter-word correlation among the nw matrices. Its values range between zero
and one, higher values indicating greater reliability. As a rule of thumb, values higher
than 0.7 are considered sufficient to obtain consistent results in social sciences (Nunnally,
1978).

2.4 Results

2.4.1 GTRP data of all varieties

To find the distance between two pronunciations of the same word, we use the Leven-
shtein distance. The dialect distance between two varieties is obtained by averaging the
distances for all the word pairs. To measure data consistency, we calculated Cronbach’s
α for the obtained distance measurements. For our results, Cronbach’s α is 0.99, which is

2.4 Results 17

562 items
The Netherlands 1 (1.077.169) Belgium 33 (469.155)
Noord-Brabant 12 (130.324) Antwerp 40 (86.257)
Limburg 15 (80.535) Belgian Limburg 38 (110.294)
Goirle (NB) 39 (2.553) Poppel (Ant) 49 (2.687)
1876 items
The Netherlands 0 (4.790.266) Belgium 27 (2.128.066)

Table 2.2. In boldface total number of distinct phonetic symbols (out of 83) which do not
occur in the transcriptions. The total size (number of phonetic symbol tokens) of the dialect
data for each region is given between parentheses.

much higher than the accepted threshold in social science (where α > 0.70 is regarded as
acceptable). We conclude that our distance measurements are highly consistent.

Figure 2.2 shows the dialect distances geographically. Varieties which are strongly re-
lated are connected by darker lines, while more distant varieties are connected by lighter
lines. Even where no lines can be seen, very faint (often invisible) lines implicitly connect
varieties which are very distant.

When inspecting the image, we note that the lines in Belgium are quite dark compared to
the lighter lines in the Netherlands. This suggests that the varieties in Belgium are more
strongly connected than those in (the north of) the Netherlands. Considering that the
northern varieties in the Netherlands were found to have stronger connections than the
southern varieties in the RND (Heeringa, 2004: 235), this result is opposite to what was
expected.

We already indicated that the data of varieties in Belgium hardly contained any word
boundaries (see Section 2.2.1), while this was not true for varieties in the Netherlands.
Although unimportant for our subset containing only single word items, this could be a
clue to the existence of structural differences in transcription method between Belgium
and the Netherlands.

We conducted a thorough analysis of the dialect data, which showed large national differ-
ences in the number of phonetic symbols used to transcribe the items. Table 2.2 indicates
the number of unused phonetic symbols in both countries, four neighbouring provinces
and two neighbouring cities. For completeness, the number of unused tokens for all 1876
items for both countries is also included. Figure 2.3 gives an overview of the phonetic
tokens which are not used in Belgium (for the complete GTRP set of 1876 items).

Table 2.3 illustrates some transcription differences between two neighbouring places near
the border of Belgium and the Netherlands (see Figure 2.4). For this example, note that
the phonetic symbols unused in Belgium include 6, I, K, U and û.

18 Dialect pronunciation comparison using the Levenshtein distance

Figure 2.2. Average Levenshtein distance among 613 GTRP varieties. Darker lines connect
close varieties, lighter lines more distant ones. We suggest that this view is confounded by
differences in transcription practice. See the text for discussion, and see Figure 2.5 (below)
for the view we defend.

2.4 Results 19

Figure 2.3. All 83 Keyboard-IPA symbols used in the GTRP data (without diacritics). Symbols
on a black background are not used in Belgian transcriptions. Original image: Goeman, Van
Reenen and Van den Berg (Meertens Instituut).

20 Dialect pronunciation comparison using the Levenshtein distance

Dutch English Goirle (NL) Poppel (BEL)
baarden beards b6rd@ bOrd@
bij (vz) at bEi bEi
blond blonde bëOnt blOnt
broeken pants brUk@ bruk@n
donker dark dONk@r doNk@r
hard hard hAöt hArt
haver oats h6v@ö hOv@r
kamers rooms k6m@Ks kOm@rs
kinderen children kEnd@ö kEnd@r
kloppen knock këOp@ klOp@
luisteren listen l2st@ö@ lœst@r@
missen miss mIs@ mise
simpel simple sImpOë semp@l
sneeuw snow snouû sne@w
tralies bars tö6lis trAlis
twaalf twelve twal@f twOl@f
vogels birds voG@ës vouG@ls
vriezen freeze vriz@ vriz@n
woensdag Wednesday wunsdAx wunzdAx
zeggen say zEG@ zEG@n

Table 2.3. Phonetic transcriptions of Goirle (NL) and Poppel (BEL) including Dutch and
English translations. Even though phonetic transcriptions are of comparable length and
complexity, the Dutch sites vary consistently use a much wider range of phonetic symbols,
confounding measurement of pronunciation distance.

Figure 2.4. Relative locations of Poppel (Belgium) and Goirle (the Netherlands).

2.4 Results 21

Transcriptions using fewer phonetic symbols are likely to be measured as more similar
due to a lower degree of possible variation. Figure 2.2 shows exactly this result. Be-
cause of these substantial transcriptional differences between the two countries (see also
Van Oostendorp, 2007; Hinskens and Van Oostendorp, 2006) it is inappropriate to com-
pare the pronunciations of the two countries directly. Therefore, in what follows, we
analyse the transcriptions of the two countries separately, and also discuss their pronun-
ciation differences separately.

2.4.2 GTRP data, the Netherlands and Belgium separately

The data was highly consistent even when regarding the countries individually. Cron-
bach’s α was 0.990 for dialect distances in the Netherlands and 0.994 for dialect distances
in Belgium.

In Figure 2.5, the strong connections among the Frisian varieties and among the Groning-
en and Drenthe (Low Saxon) varieties are clearly shown. The dialect of Gelderland and
western Overijssel can also be identified below the dialect of Drenthe. South of this group
a clear boundary can be identified, known as the boundary between Low Saxon (north-
eastern dialects) and Low Franconian (western, southwestern and southern dialects). The
rest of the map shows other less closely unified groups, for example, in Zuid-Holland and
Noord-Brabant as well as less cohesive groups in Limburg and Zeeland.

Just as was evident in Figure 2.2, Belgian varieties are tightly connected in both the va-
rieties of Antwerp as well as in those of West Flanders (see Figure 2.5). A lot of white
lines are present in Belgian Limburg however, indicating more dissimilar varieties in that
region. Note the weak lines connecting to the Ghent variety (indicating it to be very
different from the neighbouring varieties); they appear to be masked by lines of closer
varieties in the surrounding area.

By using multidimensional scaling (MDS; see Heeringa, 2004: 156 – 163) varieties can be
positioned in a three-dimensional space. The more similar two varieties are, the closer
they will be placed together. The location in the three-dimensional space (in x-, y- and
z-coordinates) can be converted to a distinct colour using red, green and blue colour
components. By assigning each collection site its own colour in the geographical map,
an overview is obtained of the distances between the varieties. Similar sites have the
same colour, while colour differs for more linguistically distant varieties. This method
is superior to a cluster map (e.g., Heeringa, 2004: 231) because MDS coordinates are
assigned to individual collection sites, which means that deviant sites become obvious,
while clustering reduces each site to one of a fixed number of groups. Hence, clustering
risks covering up problems.1

Because we are reducing the number of dimensions in the data (i.e. the dialect differ-
ences) to three by using the MDS technique, it is likely that some detail will be lost. To

1We discuss apparently exceptional sites at the end of this section, and we note here that these exceptions
are indeed obvious in clustering as well.

22 Dialect pronunciation comparison using the Levenshtein distance

Figure 2.5. Average Levenshtein distance between 613 GTRP varieties. Darker lines con-
nect close varieties, lighter lines more distant ones. The maps of the Netherlands (top) and
Belgium (bottom) must be considered independently.

2.4 Results 23

get an indication of the loss of detail, we calculate how much variance of the original
data is explained by the three-dimensional MDS output. For the Netherlands, the MDS
output explains 87.5% of the variance of the original dialect differences. For Belgium a
comparable value is obtained: 88.1%. We therefore conclude that our MDS output gives
a representative overview of the original dialect differences in both countries.

In Figure 2.6 and 2.7 the MDS colour maps of the Netherlands and Belgium are shown.
The colour of intermediate points is determined by interpolation using Inverse Distance
Weighting (see Heeringa, 2004: 156 – 163). Because the dialect data for Belgium and
the Netherlands was separated, the maps should be considered independently. Varieties
with a certain colour in Belgium are not in any way related to varieties in the Netherlands
having the same colour. Different colours only identify distant varieties within a country.

To help interpret the colour maps, we calculated all dialect distances on the basis of the
pronunciations of every single word in our GTRP subset. By correlating these distances
with the distances of every MDS dimension, we were able to identify the words which
correlated most strongly with the distances of the separate MDS dimensions.

For the Netherlands we found that the dialect distances on the basis of the first MDS
dimension (separating Low Saxon from the rest of the Netherlands) correlated most
strongly (r = 0.66) with distances obtained on the basis of the pronunciation of the word
moeten ‘must’. For the second MDS dimension (separating the north of the Netherlands,
most notably Friesland, from the rest of the Netherlands) the word donderdag ‘Thurs-
day’ showed the highest correlation (r = 0.59). The word schepen ‘ships’ correlated most
strongly (r = 0.49) with the third MDS dimension (primarily separating Limburg from
the rest of the Netherlands). For Belgium we found that the dialect distances obtained on
the basis of the pronunciation of the word wol ‘wool’ correlated most strongly (r = 0.82)
with the first MDS dimension (separating eastern and western Belgium). The word schrij-
ven ‘write’ correlated most strongly (r = 0.63) with the second MDS dimension (separat-
ing the middle part of Belgium from the outer eastern and western part), while the word
vrijdag ‘Friday’ showed the highest correlation (r = 0.50) with the third MDS dimension
(primarily separating Ghent and the outer eastern Belgium part from the rest). Figure 2.6
and 2.7 also display these words and corresponding pronunciations in every region.

On the map of the Netherlands, varieties of the Frisian language can clearly be distin-
guished by the blue colour. The town Frisian varieties are purpler than the rest of the
Frisian varieties. This can be seen clearly in the circle representing the Leeuwarden va-
riety. The Low Saxon area can be identified by a greenish colour. Note that the dialect
of Twente (near Oldenzaal) is distinguished from the rest of Overijssel by a less bluish
green colour. The Low Franconian dialects of the Netherlands can be identified by their
reddish tints. Due to its bright red colour, the dialect of Limburg can be identified within
the Low Franconian dialects of the Netherlands.

For the Belgian varieties, the dialects of West Flanders (green) and Brabant (blue) can
be clearly distinguished. In between, the dialects of East Flanders (light blue) and Lim-
burg (red) can also be identified. Finally, the distinction between Ghent (pink) and its
surrounding varieties (greenish) can be seen clearly.

24 Dialect pronunciation comparison using the Levenshtein distance

Figure 2.6. The GTRP data of the Netherlands reduced to its three most important dimen-
sions via MDS (accounting for roughly 88% of dialect variation). Pronunciations of the word
moeten ‘must’, donderdag ‘Thursday’, and schepen ‘ships’ correlate most strongly with the first,
second and third MDS dimension respectively.

2.4 Results 25

Figure 2.7. The GTRP data of Belgium reduced to its three most important dimensions via
MDS (accounting for roughly 88% of dialect variation). Pronunciations of the word wol
‘wool’, schrijven ‘write’ and vrijdag ‘Friday’ correlate most strongly with the first, second and
third MDS dimension respectively.

26 Dialect pronunciation comparison using the Levenshtein distance

Apparent dialect islands

A careful examination of Figure 2.6 reveals a few sites whose MDS dimensions (and
therefore colours) deviate a great deal from their surroundings. For example, there are
two bright points around Twente (above the Oldenzaal label) which might appear to be
dialect islands. Upon inspection it turns out that these points both used transcriptions
by the same fieldworker, who, moreover, contributed almost only those (four) sets of
transcriptions to the entire database. We therefore strongly suspect that the apparent is-
lands in Twente are “transcriber isoglosses”. Also Hinskens and Van Oostendorp (2006)
reported the existence of transcriber effects in the GTRP data.

But the points in Twente are not the only apparent dialect islands. What can we do
about this? Unfortunately, there are no general and automated means of correcting de-
viant transcriptions or correcting analyses based on them. At very abstract levels we can
correct mathematically for differences in a very small number of transcribers (or field-
workers), but we know of no techniques that would apply in general to the GTRP data.
It is possible to compare analyses which exclude suspect data to analyses which include
it, but we should prefer not to identify suspect data only via its deviance with respect to
its neighbours.

2.4.3 GTRP compared to RND

Our purpose in the present section is to examine the GTRP against the background of the
RND in order to detect whether there have been changes in the Dutch dialect landscape.
We employ a regression analysis (below) to detect areas of relative convergence and di-
vergence. The regression analysis identifies an overall tendency between the RND and
GTRP distances, against which convergence and divergence may be identified: divergent
sites are those for which the actual difference between the RND and GTRP distances ex-
ceeds the general tendency, and convergent sites are those with distances less than the
tendency.

We are not analysing the rate of the changes we detect. Given the large time span over
which the RND was collected, it would be illegitimate to interpret the results of this
section as indicative of the rate of pronunciation change. This should be clear when one
reflects first, that we are comparing both the RND and the GTRP data at the times at
which they were recorded, and second, that the RND data was recorded over a period of
fifty years. One could analyse the rate of change if one included the time of recording in
the analysis, but we have not done that.

We verify first that the regression analysis may be applying, starting with the issue of
whether there is ample material for comparison.

In Section 2.2.2 we mentioned that the comparison between the RND and GTRP in this
chapter are based only on the 224 common varieties and the 59 common words. Although
one might find this number of words quite small, we still obtained consistent results.

2.4 Results 27

When we use the RND data, Cronbach’s α is 0.95 for the data from the Netherlands and
0.91 for the data from Belgium. For the GTRP data we found Cronbach’s α values of 0.91
and 0.95 respectively.

We correlated the RND distances with the GTRP distances and found a correlation of
r = 0.83 for the Netherlandic distances, and a correlation of r = 0.82 for the Belgian
distances. These correlations are significant (p < 0.001) according to the Mantel test, a
test which takes into account the fact that the distances within a distance matrix are not
fully independent (see Heeringa, 2004: 74 – 75 for a brief explanation of this test). The
correlations indicate a strong, but not perfect relationship between the old RND dialect
distances and the newer GTRP dialect distances. In the sections below we will examine
these differences.

Comparison of transcriptions and distances

In Section 2.3 we described how we have measured pronunciation distances. The RND
and the GTRP distances are measured in the same way, but the measurements are based
on different kinds of transcriptions. As shown in Section 2.4.1, these differences may be
reflected in the number of different phonetic symbols used in the transcriptions. There-
fore we counted the number of different speech segments in the set of common varieties
and common words for both the RND and the GTRP. Ignoring suprasegmentals and di-
acritics we found the following results:

RND original RND modified GTRP
Netherlands 43 40 73
Belgium 42 40 44

In the column ‘RND original’ counts are given on the basis of the original, unchanged
transcriptions. When calculating Levenshtein distances, we used a modified version of
the transcriptions in which some of the different notations used by different transcribers,
are normalised (see Heeringa, 2004: 217 – 226). Counts on the basis of these modified
transcriptions are given in the column ‘RND modified’.

If we wished to compare pronunciation directly between the RND and the GTRP, it would
be important to verify that same scale. The table above shows that the number of different
segments is about the same in all cases, except for the Netherlandic GTRP data which has
a much higher number of different tokens (73). We now examine whether the number of
different tokens influences our Levenshtein distance measurements. For both countries
within each data source we calculated the mean and the standard deviation of the aver-
age Levenshtein distances of all pairs of varieties. Remember that each dialect distance
represents the average number of operations needed to transform one pronunciation into
another. We found the following results:

RND mean GTRP mean RND st. dev. GTRP st. dev.
Netherlands 1.58 2.03 0.51 0.44
Belgium 1.47 1.64 0.36 0.52

28 Dialect pronunciation comparison using the Levenshtein distance

When comparing the means with the corresponding number of different tokens in the
table above, we find the expected tendency that a lower number of distinctive tokens
corresponds to lower distances. We do not find a clear relationship between the standard
deviations and the number of different tokens.

We compared the RND dialect distances to corresponding GTRP dialect distances by
means of a matched-pairs t-test. It turns out that GTRP distances are higher than the
RND distances (p < 0.001 for both the Netherlands and Belgium). We emphasise that we
do not interpret this as evidence that the Dutch dialects are diverging from one another
in general for reasons we turn to immediately.

The differences in the number of different tokens on the one hand, and the differences
in distances on the other hand, show that the results of the GTRP cannot be directly
compared to the results of the RND. We will therefore use regression analysis to compare
the results of the two different data sources.

Linear regression analysis

The idea behind regression analysis is that a dependent variable can be predicted by an
independent variable. A linear regression procedure finds a formula which defines a lin-
ear relationship between the independent variable and the dependent variable. Because
the relationship will usually not be perfectly linear, the values predicted by the formula
on the basis of the independent variable will differ from the values of the dependent
variable. The differences between the predicted values and the real observations of the
dependent variable are called residues.

Since the past may influence the present but not vice versa, we regard the RND distances
as the independent variable, and the GTRP distances as dependent. With regression anal-
ysis we obtain differences between the predicted GTRP distances and the real GTRP dis-
tances, i.e. the residues. These residues can be either positive or negative. A positive
residue means that the real GTRP distance is larger than the GTRP distance predicted on
the basis of the corresponding RND distance. A negative residue means the real GTRP
distance is lower than expected on the basis of the corresponding RND distance.

As mentioned above, we cannot directly compare GTRP distances with RND distances.
This means that we cannot determine whether varieties have converged or diverged in
absolute terms. But residues tell us whether and to what degree some varieties have be-
come relatively closer, and others relatively more distant. ‘Relatively’ means: in relation
to distances of the other dialect pairs. We will refer to this as ‘relative convergence’ and
‘relative divergence’.

For instance, assume that variety A converged to variety B, variety C converged to variety
D, and variety E converged to variety F. The varieties A and B converged more strongly
than varieties C and D, and varieties E and F converged less strongly than varieties C
and D. We are not able to detect the overall pattern of convergence, but we are able to
detect that the relationships among the dialect pairs have changed with respect to their

2.4 Results 29

relative distances. Ignoring the overall pattern, we would find that varieties A and B
have relatively converged, and varieties E and F have relatively diverged.

Figure 2.8 shows the residues. Varieties which have relatively converged are connected
by blue lines, and varieties which have relatively diverged are connected by red lines.
When we consider the Netherlands, we find that the Frisian dialects in the northwest,
and the dialects in the eastern part of the province of Noord-Brabant (south of Goirle) and
those in the province of Limburg (north and south of Venlo) have relatively converged.

The Frisian dialects are known to be very homogeneous. Therefore it is striking that the
dialects became—relatively—even more similar to each other. The Frisian dialects have
not converged toward the surrounding dialects, for example toward the Noord-Holland
dialects, which are relatively close to standard Dutch. The internal convergence could be
the result of the influence of standard Frisian in which case these dialects have become
more standardised, i.e. closer to standard Frisian.

In contrast, the Limburg dialects are known to be very heterogeneous and relatively
distant from standard Dutch. The strong relative convergence of Limburg and east-
ern Noord-Brabant dialects may be explained by convergence towards standard Dutch,
which makes them more similar to each other and to some surrounding dialects which
are relatively similar to standard Dutch. This idea is supported by a slight relative con-
vergence toward dialects north of Brabant, in the south of the province of Gelderland.

Strong relative divergence is found among the Twente varieties, the area including and
west of Oldenzaal. We have no good dialectological explanation for this. However, there
were a large number of transcribers (6) in this small region and it could be that the diver-
gence is caused by transcriber problems (e.g., see Section 2.4.2).

When examining Flanders in Figure 2.8, we find relative convergence in most provinces,
probably again as the result of convergence towards standard Dutch. One clear exception
is the variety of Ghent. Phonologically the variety of Ghent differs strongly from the sur-
rounding varieties. For instance, all vowels in the variety of Ghent are longer than in the
surrounding varieties. Since this development concerns a single variety, we would wish
to verify that the Ghent data has been collected and transcribed in the same manner as
the other data of other varieties. Assuming that the material is reliable and comparable,
we would conjecture that the variety of Ghent has been influenced much less by standard
(Flemish) Dutch, making the contrast to the surrounding dialects larger.

Principal component analysis

Principal component analysis (PCA) is a technique used for reducing multiple dimen-
sions of a dataset to a lower number of dimensions. Dimensions which show similar
patterns across the items, thus having high correlations, are fused to a single component.
The PCA procedure transforms the data to a lower number of components so that the
greatest variance is placed on the first principal component, the second greatest variance

30 Dialect pronunciation comparison using the Levenshtein distance

Figure 2.8. Relative convergence and divergence among dialects. Relative convergence
means that dialects have become closer in relation to distances of the other dialect pairs and
relative divergence means that dialects have become more distant in relation to distances of
the other dialect pairs. The intensity of blue (red) represents the degree of relative conver-
gence (divergence), and lines longer than the black vertical line in the lower right corner are
not shown.

2.5 Discussion 31

on the second component, and so on. The number of dimensions is reduced so that char-
acteristics of the dataset that contribute most to its variance are retained (Tabachnik and
Fidell, 2001: Chapter 13).

With linear regression analysis we obtained a residue for each pair of varieties. When
we have nd varieties, each variety has a residue to each of the other nd − 1 varieties and
to itself (which is always 0). In this way a variety is defined as a range of nd values,
i.e. there are nd dimensions. Each dimension shows a pattern of relative convergence and
divergence among the varieties.

Because we have 164 varieties in the Netherlands, they are represented by 164 dimen-
sions. The SPSS PCA procedure reduces the number of dimensions to 14 components.
The first component represents 34.9% of the variance in the original data, the second
component represents 13.6%, the third component 11.5%, etc. The 60 Belgian varieties
represent 60 dimensions. With PCA the number of dimensions is reduced to 7 compo-
nents. The first component represents 41.8% of the variance in the residues, the second
one represents 22.5%, the third one 8%, etc. As we mentioned above, the greatest variance
is placed on the first component. In Figure 2.9 the values of the first principal component
are geographically visualised. Higher values are represented by lighter grey tones.

Considering the Netherlands, we find a sharp distinction between the Frisian area which
is nearly white, and the rest of the Netherlands which is coloured more darkly. White
colours signify dialects which behave similar to Frisian, and in this case, this is only
Frisian. White thus means that varieties have a strong relative convergence towards
Frisian. Black represents varieties without any pattern which converge or diverge to all
other varieties to the same degree. So the main finding is that Frisian dialects converged
with respect to each other, but not with respect to other dialects. Especially striking is the
dark area found between Oldenzaal and Putten. This area is geographically close to the
border between the northeastern Low Saxon dialects and the southern Low Franconian
dialects. They do not converge or diverge more strongly with respect to some dialects
as compared to others. Although this dark area could also be caused by the possible
transcriber effect discussed in Section 2.4.2.

When looking at Flanders, we see a clear east-west division. The east is coloured nearly
white, especially the province of Antwerp (north of Mechelen). The western part is
coloured more darkly. White means that varieties have a strong relative convergence
to dialects in the east (Brabant, Antwerp, and Limburg). Dark represents varieties that
strongly converged toward dialects in the west (French Flanders and West Flanders). So
the main pattern is that western varieties and eastern varieties both converge internally,
even while they do not converge toward each other.

2.5 Discussion

In this chapter we have provided an aggregate analysis of the pronunciation in contem-
porary Dutch dialects as these are sampled in the GTRP. The sheer scale of the GTRP

32 Dialect pronunciation comparison using the Levenshtein distance

Figure 2.9. Grey tones represent values of the first component obtained with principal com-
ponent analysis applied to the residues shown in Figure 2.8. Varieties which have the same
pattern of relative convergence and divergence with respect to other varieties show similar
grey tones. Thus Friesland and East Flanders house groups of dialects which have developed
similarly within the two countries, and in fact, convergently. The maps of the Netherlands
and Belgium should be interpreted independently from each other.

2.5 Discussion 33

guarantees the basis for a reliable analysis, which in turn demonstrates that the Dutch-
speaking landscape is still richly contoured with Friesland, Limburg and Low Saxony as
the most distinct areas.

In order to protect our analysis from potential, perhaps subtle differences in measure-
ment scale due to transcription differences between the RND and the GTRP, we used
the residues of a regression analysis in order to identify the most dynamic areas of con-
vergence and divergence. The comparison between the situation in roughly the mid-
twentieth century as documented in the RND and the current situation (as documented
by the GTRP) revealed that Friesland, Flemish Brabant, West Flanders, and Limburg are
areas of dynamic convergence, while Ghent and the southeastern part of Low Saxony are
areas of divergence. We also qualified this general characterisation, noting that the RND
was collected over a fifty year period, which prevents us from drawing conclusions with
respect to the rate of pronunciation change.

We extracted the first principal component from the residues of the regression analysis,
which revealed that Friesland and eastern Flanders are behaving coherently. We would
like to emphasise that the use of regression analysis, including the application of PCA to
its residues, is an innovation in dialectometric technique.

In addition, we examined an apparent discrepancy in the degree of phonetic discrimina-
tion provided by GTRP transcriptions for the Netherlands as opposed to that provided
for transcriptions for Belgium. After further examination, we concluded that the discrep-
ancy is genuine, and that care is required in analyses involving subsamples of the GTRP
involving sites in both countries. An aggregate analysis such as ours is certainly prone to
confounding due to discrepancies in data sampling, recording and transcription, but let
us hasten to add that single variable analyses are by no means immune to these problems.

This line of work suggests several further investigations. First, it would be interesting to
attempt to interpret the second and third principal components of the relative changes, an
undertaking which would require more attention to phonetic detail than we have exer-
cised here. Second, we are interested in potential means of correcting for the sorts of tran-
scription differences noted. Are there automatic means of "reducing" the more detailed
transcriptions to less detailed ones? Or must we settle for purely numeric corrections,
which would mean that we have little to no opportunity to interpret the "corrections"
linguistically? A project which would interest us, but which could only be undertaken in
collaboration with the "stewards" of the GTRP would be to map the more complex Dutch
transcription system onto the simpler Flemish one. This could, of course, turn out to in-
volve too many decisions about individual sounds to be feasible, but it could also turn
out to be straightforward.

Third, in discussing the Netherlandic part of the GTRP we noted clues that fieldworker
and transcription practices may be confounding analyses to some degree (see also Hins-
kens and Van Oostendorp, 2006). This potential confound is bothersome, and it would
be rewarding to eliminate it. The most rewarding, but the most difficult strategy would
be to try to analyse pronunciation difference purely acoustically, eliminating the need for
transcriptions. Perhaps more realistic would be to develop strategies to identify clues that

34 Dialect pronunciation comparison using the Levenshtein distance

transcriptions are being produced differently and also to quantify the degree to which
different transcription might distort measurements. But even in the absence of general
techniques, it would be useful to know where transcriber differences may exist in the
GTRP.

Finally, a very exciting, and also promising opportunity suggests itself in the rich sam-
ple of morphological variation represented in the GTRP, which, after all, is the basis of
the Morfologische Atlas van de Nederlandse Dialecten (MAND; De Schutter et al., 2005). Al-
though Seguy (1973) and Goebl (1984) include morphological variables in their dialecto-
metric work, the morphological material is analysed at a categorical level, i.e. in which
only "same" and "different" are distinguished. The development of a measure of morpho-
logical distance reflecting not only the potentially differing exponence of common mor-
phological categories (which after all are already reflected in pronunciation difference),
but also reflecting the effect of non-coincidental categories (such as the second Frisian
infinitive), would be a rewarding challenge.

3 Dialect pronunciation comparison using
Pair Hidden Markov Models

Abstract∗

Pair Hidden Markov Models (PairHMMs) are trained to align the pronunciation
transcriptions of a large contemporary collection of Dutch dialect material, the Goe-
man-Taeldeman-Van Reenen-Project (GTRP, collected 1980 – 1995). We focus on
the question of how to incorporate information about sound segment distances to im-
prove sequence distance measures for use in dialect comparison. PairHMMs induce
segment distances via expectation maximisation (EM). Our analysis uses a phono-
logically comparable subset of 562 items for 424 localities in the Netherlands and 189
localities in Belgium. We evaluate the work first via comparison to analyses obtained
using the Levenshtein distance on the same datasets and second, by comparing the
quality of the induced vowel distances to acoustic differences.

3.1 Introduction

Dialectology catalogues the geographic distribution of the linguistic variation that is a
necessary condition for language change (Wolfram and Schilling-Estes, 2003), and is
sometimes successful in identifying geographic correlates of historical developments (La-
bov, 2001). Computational methods for studying dialect pronunciation variation have
been successful using various edit distance and related string distance measures, but un-
successful in using segment differences to improve these (Heeringa, 2004). The most
successful techniques distinguish consonants and vowels, but treat e.g. all the vowel
differences as the same. Ignoring the special treatment of vowels vs. consonants, the
techniques regard segments in a binary fashion—as alike or different—in spite of the
overwhelming consensus that some sounds are much more alike than others. There have
been many attempts to incorporate more sensitive segment differences, which do not
necessarily perform worse in validation, but they fail to show significant improvement
(Heeringa, 2004).

Instead of using segment distances as these are (incompletely) suggested by phonetic or
phonological theory, we can also attempt to acquire these automatically.
∗An adapted version of this text, excluding Belgian results, was accepted at the workshop Computing and

Historical Phonology: 9th ACL Special Interest Group for Morphology and Phonology (2007) as: M. Wieling,
T. Leinonen, and J. Nerbonne. Inducing Sound Segment Differences using Pair Hidden Markov Models.

36 Dialect pronunciation comparison using Pair Hidden Markov Models

Mackay and Kondrak (2005) introduce Pair Hidden Markov Models (PairHMMs) to lan-
guage studies, applying them to the problem of recognising “cognates” in the sense of
machine translation, i.e. pairs of words in different languages that are similar enough in
sound and meaning to serve as translation equivalents. Such words may be cognate in
the sense of historical linguistics, but they may also be borrowings from a third language.
We apply PairHMMs to dialect data for the first time in this paper. Like Mackay and Kon-
drak (2005) we evaluate the results both on a specific task, in our case, dialect classifica-
tion, and also via examination of the segment substitution probabilities induced by the
PairHMM training procedures. We suggest using the acoustic distances between vowels
as a probe to explore the segment substitution probabilities induced by the PairHMMs.

Naturally, this validation procedure only makes sense if dialects are using acoustically
more similar sounds in their variation, rather than, for example, randomly varied sounds.
But why should linguistic and geographic proximity be mirrored by frequency of corre-
spondence? Historical linguistics suggests that sound changes propagate geographically,
which means that nearby localities should on average share the most changes. In addi-
tion some changes are convergent to local varieties, increasing the tendency toward local
similarity. The overall effect in both cases strengthens the similarity of nearby varieties.
Correspondences among more distant varieties are more easily disturbed by intervening
changes and decreasing strength of propagation.

In the next section the dialectal material used in this chapter is discussed. Section 3.3
explains the Pair Hidden Markov Model, while the results are presented in Section 3.4.
Finally, Section 3.5 will provide a discussion of these results.

3.2 Material

In this chapter the same data is used as introduced in Section 2.2.1. Because the GTRP
transcriptions of Belgian varieties are fundamentally different from transcriptions of Ne-
therlandic varieties (see Section 2.4.1), we will use and analyse the data of the 424 vari-
eties in the Netherlands separately from the data of the 189 Belgian varieties. The geo-
graphic distribution of the varieties for both Belgium and the Netherlands can be seen in
Figure 2.1.

3.3 The Pair Hidden Markov Model

In this chapter we will use a Pair Hidden Markov Model (PairHMM), which is essentially
a Hidden Markov Model (HMM) adapted to assign similarity scores to word pairs and
to use these similarity scores to compute string distances. For completeness we will start
with a short introduction of the Hidden Markov Model. For a more detailed introduction,
please refer to Rabiner and Juang (1986) or Rabiner (1989).

3.3 The Pair Hidden Markov Model 37

The Hidden Markov Model µ is defined by the following parameters (see Mackay, 2004):

• Set of states: S = {s1, · · · , sN}

• Output alphabet: Σ = {σ1, · · · , σM}

• Initial state probabilities: Π = {πi | i ∈ S}

• State transition probabilities: A = {ai,j | i, j ∈ S}

• State emission probabilities: E = {ek(b) | k ∈ S, b ∈ Σ}

• State sequence: X = (X1, · · · , XT), Xt ∈ S

• Output sequence: O = (o1, · · · , oT), ot ∈ Σ

An HMM generates an output sequence (i.e. observation sequence) based on the param-
eters above. The HMM starts in a state i with probability πi, goes from a state i to a new
state j with probability aij , and emits a certain output symbol b in every state k with
probability ek(b). Formally the HMM µ is defined as a triplet: µ = (A,E, Π).

Unlike a regular Markov Model, the output sequence of a Hidden Markov Model does
not uniquely determine the state sequence. In a regular Markov Model every state emits
a determined output symbol, but in an HMM a state can output one of several output
symbols based on the emission probabilities. Hence, the term “hidden” refers to the
hidden state sequence (Eddy, 2004). The probability of an observation sequence given
an HMM can be calculated by using well known HMM algorithms such as the Forward
algorithm and the Viterbi algorithms (e.g., see Rabiner, 1989).

A Pair Hidden Markov Model (PairHMM) is an adapted Hidden Markov Model in the
sense that it generates two (aligned) observation streams in parallel instead of one. The
PairHMM was originally proposed by Durbin et al. (1998) and has successfully been used
for aligning biological sequences. Mackay and Kondrak (2005) adapted the algorithm to
calculate similarity scores for word pairs in orthographic form, focusing on identifying
translation equivalents in bilingual corpora.

Their modified PairHMM has three emitting states representing the basic edit operations:
a substitution state (M), a deletion state (X) and an insertion state (Y). In the substitution
state two symbols xi and yj are emitted with probability pxiyj . In the deletion state sym-
bol xi is emitted against a gap with probability qxi and in the insertion state a gap is
emitted against symbol yj with probability qyj . The model is shown in Figure 3.1. The
four transition parameters are specified by λ, δ, ε and τ . There is no explicit start state;
the probability of starting in one of the three states is equal to the probability of going
from the substitution state to that state. The only non-emitting state in the PairHMM is
the end state which is always the final state in a state sequence.

38 Dialect pronunciation comparison using Pair Hidden Markov Models

Figure 3.1. Pair Hidden Markov Model. Image courtesy of Mackay and Kondrak (2005).

In this chapter we use the PairHMM of Mackay and Kondrak (2005) to align phonetically
transcribed words. For instance, a possible alignment (including the state sequence) for
two Dutch dialectal variants of the word ‘milk’, [mO@lk@] and [mEl@k], is given by:

m O @ l k @
m E l @ k
M M X M Y M X

We will use the Pair Hidden Markov Model to obtain a similarity score for every word
pair. For that purpose in the following section several PairHMM algorithms are intro-
duced and explained. However, before the Pair Hidden Markov Model can be used to
calculate the similarity scores, the parameters of the PairHMM have to be determined.
Section 3.3.2 introduces the Baum-Welch algorithm which can be used to estimate these
parameters. All PairHMM algorithms discussed in these sections have been described
by Durbin et al. (1998) and adapted to the word alignment task by Mackay and Kondrak.
(2005; however more detailed descriptions can be found in Mackay, 2004).

3.3.1 Calculating word pair similarity scores using the PairHMM

There are several ways to calculate the similarity score for a given word pair when the
transition and emission probabilities of the PairHMM are known. First, we can use the
Forward (or Backward) algorithm, which takes all possible alignments into account, to
calculate the probability of the observation sequence given the PairHMM and use this

3.3 The Pair Hidden Markov Model 39

probability as a similarity score (corrected for length). Second, we can use the Viterbi
algorithm to calculate the probability of the best alignment and use this probability as a
similarity score (also corrected for length). Third, we can adapt the Viterbi and Forward
algorithms to take into account how likely it is that a pair of words occur together while
they have no underlying relationship (i.e. the log-odds algorithm). These algorithms will
be explained in detail in the following sections. To help understand the specific PairHMM
algorithms, in every section the general HMM algorithm is explained first.

The Forward algorithm

In general, a naive method to calculate the probability of an observation sequence of
length T using a Hidden Markov Model is to calculate the probability for every state
sequence (each consisting of O(T) operations) and sum them. For N states there are NT

possible state sequences thus yielding an exponential time complexity of O(TNT) (see
Rabiner, 1989).

To find a more efficient solution, we can make use of the dynamic programming approach
introduced in Section 2.3.1. The main idea is that the complexity can be reduced by
keeping track of optimal solutions to sub-problems (observation sequences of shorter
length). This algorithm is called the Forward algorithm and uses the Forward variable
αi(t) to store the probability of being in state i at time t (i.e. Xt = i) and having seen the
partial observation sequence o1 · · · ot. The Forward variable is formally defined as:

αi(t) = P (o1 · · · ot, Xt = i|µ). (3.1)

Table 3.1 shows how the Forward variables are calculated recursively for every time step
t and are combined to give the probability of the observation sequence O for the model
µ. The time complexity of the Forward algorithm is O(TN2) and therefore much more
efficient than the naive approach (Rabiner, 1989).

Table 3.2 shows the Forward algorithm adapted for the PairHMM described by Mackay
(2004; see also Figure 3.1). In this table • represents an action performed for all states: M
(substitution state), X (deletion state) and Y (insertion state). The value pxiyj is the proba-
bility of matching a character at position i in observation stream x (i.e. string x of length
n) with a character at position j in string y of length m (a substitution). Analogously, qxi

is the probability of matching a character at position i in string x with a gap in string y
(a deletion), while qyj is the probability of matching a gap in string x with a character at
position j in string y (an insertion).

The conversion is straightforward; the most notable change is that there are two observa-
tion streams instead of one. The positions in these observation streams are indicated by i
and j respectively.

In calculating the observation probability, the PairHMM Forward algorithm considers
all possible alignments of the two observation streams. For instance, when calculating

40 Dialect pronunciation comparison using Pair Hidden Markov Models

1. Initialisation

αi(1) = πiei(o1), 1 ≤ i ≤ N.

2. Induction

αj(t) = ej(ot)
N∑

i=1

αi(t− 1)aij , 1 < t ≤ T, 1 ≤ j ≤ N.

3. Termination

P (O|µ) =
N∑

i=1

αi(T).

Table 3.1. Forward algorithm for Hidden Markov Models. This formulation assumes an
observation sequence o1 · · · on where oj is the observation at time j. The value αi(t) is the
chance of being in state i at time t and having seen the partial observation sequence o1 · · · ot.
Note that it sums over all the paths through the HMM.

the probability of the observation sequences [a b] and [b a], the probabilities of the
following alignments are calculated (with - indicating a gap):

a b a b - a b - a b - - a - b
b a b - a - b a - - b a b a -

a - b a - b - a - - b - a b - a b
- b a - b - a - b a - b a - b - a

- a b - - a - b - - a b
b - - a b - a - a b - -

The probability calculated by the Forward algorithm can be used to determine the sim-
ilarity between word pairs. However, due to the multiplication of probabilities, longer
observation sequences will yield a relative lower probability than shorter observation se-
quences. To correct for this effect in determining similarity, a correction depending on
the length q of the longest observation sequence is applied to yield the final Forward
similarity score. The constant value C was determined by experimentation (in our case
C = 0.08).

P (O|µ)
Cq

. (3.2)

3.3 The Pair Hidden Markov Model 41

1. Initialisation

fM (0, 0) = 1− 2δ − τM , fX(0, 0) = fY (0, 0) = δ.

∀i, j : f•(i,−1), f•(−1, j) = 0.

2. Induction: for 0 ≤ i ≤ n, 0 ≤ j ≤ m, except (0, 0)

fM (i, j) = pxiyj [(1− 2δ − τM)fM (i− 1, j − 1)

+ (1− ε− λ− τXY)(fX(i− 1, j − 1) + fY (i− 1, j − 1))].
fX(i, j) = qxi [δf

M (i− 1, j) + εfX(i− 1, j) + λfY (i− 1, j)].
fY (i, j) = qyj [δf

M (i, j − 1) + εfY (i, j − 1) + λfX(i, j − 1)].

3. Termination

P (O|µ) = τMfM (n, m) + τXY (fX(n, m) + fY (n, m)).

Table 3.2. Forward algorithm for Pair Hidden Markov Models

The Backward algorithm

The Forward algorithm calculates the observation probability P (O|µ) by starting at the
beginning of the observation sequence. Correspondingly, it is also possible calculate
P (O|µ) by starting at the end of the observation sequence. This approach is followed
in the Backward algorithm which uses the Backward variable βi(t) to store the probabil-
ity of being in state i at time t and seeing the partial observation sequence ot+1 · · · oT . It
is formally defined as:

βi(t) = P (ot+1 · · · oT |Xt = i, µ). (3.3)

The Backward algorithm is highly similar to the Forward algorithm and is shown in Ta-
ble 3.3 for the regular Hidden Markov Model and in Table 3.4 for the PairHMM (Mackay,
2004). The time complexity of the Backward algorithm is equal to the time complexity of
the Forward algorithm, O(TN2) (Rabiner, 1989).

As in the Forward case, we correct for the length of the longest observation sequence q
with equation (3.2) to obtain the word similarity score.

42 Dialect pronunciation comparison using Pair Hidden Markov Models

1. Initialisation

βi(T) = 1, 1 ≤ i ≤ N.

2. Induction

βi(t) =
N∑

j=1

βj(t + 1)aijej(ot+1), T > t ≥ 1, 1 ≤ i ≤ N.

3. Termination

P (O|µ) =
N∑

i=1

πiβi(1).

Table 3.3. Backward algorithm for Hidden Markov Models

1. Initialisation

bM (n, m) = τM , bX(n, m) = bY (n, m) = τXY .

∀i, j : b•(i, m + 1), b•(n + 1, j) = 0.

2. Induction: for n ≥ i ≥ 0,m ≥ j ≥ 0, except (n, m)

bM (i, j) = (1− 2δ − τM)pxi+1yj+1b
M (i + 1, j + 1)

+ δ(qxi+1b
X(i + 1, j) + qyj+1b

Y (i, j + 1)).

bX(i, j) = (1− ε− λ− τXY)pxi+1yj+1b
M (i + 1, j + 1)

+ εqxi+1b
X(i + 1, j) + λqyj+1b

Y (i, j + 1)).

bY (i, j) = (1− ε− λ− τXY)pxi+1yj+1b
M (i + 1, j + 1)

+ εqyj+1b
Y (i, j + 1) + λqxi+1b

X(i + 1, j).

3. Termination

P (O|µ) = (1− 2δ − τM)bM (0, 0) + δ(bX(0, 0) + bY (0, 0)).

Table 3.4. Backward algorithm for Pair Hidden Markov Models

3.3 The Pair Hidden Markov Model 43

The Viterbi algorithm

Besides calculating a similarity score for the word pairs based on all alignments, it is also
possible to calculate a similarity score for the word pairs based on the best alignment,
i.e. the single alignment having the highest probability (Rabiner, 1989).

The Viterbi algorithm is a dynamic programming algorithm similar to the Forward al-
gorithm and calculates the probability of the best path. In its original form the Viterbi
algorithm also stores the state sequence of the best path. Because we are only interested
in obtaining a similarity score for each word pair and not in the exact alignment, we do
not need to store the state sequence. In this case, the Viterbi algorithm only differs from
the Forward algorithm by calculating the maximum instead of the sum.

The Viterbi algorithm uses the variable δi(t) to store the highest probability of the sin-
gle best state path through a Hidden Markov Model µ consisting of t observations and
ending in state i. This variable is formally defined as:

δi(t) = max
X1···Xt−1

P (X1 · · ·Xt−1, o1 · · · ot, Xt = i|µ). (3.4)

The Viterbi algorithm for the general Hidden Markov Model (without storing the best
state sequence X∗) is shown in Table 3.5. The time complexity of the Viterbi algorithm is
O(TN2) and therefore equal to the time complexity of the Forward algorithm.

Table 3.6 shows the Viterbi algorithm adapted for the PairHMM described by Mackay
(2004, see also Figure 3.1). The conversion is analogous to the conversion of the Forward
algorithm (see Table 3.1 and 3.2).

1. Initialisation

δi(1) = πiei(o1), 1 ≤ i ≤ N.

2. Induction

δj(t) = ej(ot) max
1≤i≤N

δi(t− 1)aij , 1 < t ≤ T, 1 ≤ j ≤ N.

3. Termination

P (X∗) = max
1≤i≤N

δi(T).

Table 3.5. Viterbi algorithm for Hidden Markov Models

44 Dialect pronunciation comparison using Pair Hidden Markov Models

1. Initialisation

vM (0, 0) = 1− 2δ − τM , vX(0, 0) = vY (0, 0) = δ.

∀i, j : v•(i,−1), v•(−1, j) = 0.

2. Induction: for 0 ≤ i ≤ n, 0 ≤ j ≤ m, except (0, 0)

vM (i, j) = pxiyj max


(1− 2δ − τM)vM (i− 1, j − 1)
(1− ε− λ− τXY)vX(i− 1, j − 1)
(1− ε− λ− τXY)vY (i− 1, j − 1)

 .

vX(i, j) = qximax


δvM (i− 1, j)
εvX(i− 1, j)
λvY (i− 1, j)

 .

vY (i, j) = qyj max


δvM (i, j − 1)
εvY (i, j − 1)
λvX(i, j − 1)

 .

3. Termination

P (X∗) = max(τMvM (n, m), τXY vX(n, m), τXY vY (n, m)).

Table 3.6. Viterbi algorithm for Pair Hidden Markov Models

The probability calculated by the Viterbi algorithm can also be used to determine the
similarity between word pairs. However as in the Forward case, longer observation se-
quences will yield a relative lower probability than shorter observation sequences. To
correct for this effect in determining the Viterbi similarity score, the same correction is
applied as in (3.2) (with q being the length of the longest string and C a constant value
set to 0.08):

P (X∗)
Cq

. (3.5)

The log-odds algorithm

Another method to calculate the similarity score is using the log-odds algorithm (Durbin
et al., 1998). The log-odds algorithm uses a random model to represent how likely it is
that a pair of words occur together while they have no underlying relationship. Because
we are looking at word alignments, this means an alignment consisting of no substitu-
tions but only insertions and deletions. Mackay and Kondrak (2005) propose a random

3.3 The Pair Hidden Markov Model 45

Figure 3.2. Random PairHMM. Image courtesy of Mackay and Kondrak (2005).

model which only has an insertion state and a deletion state and generates one word com-
pletely before the other (see Figure 3.2). For instance, according to the random model the
alignment (including the state sequence) for two Dutch dialectal variants of the word
‘milk’, [mO@lk@] and [mEl@k], is given by:

m O @ l k @
m E l @ k

X X X X X X Y Y Y Y Y

The model is described by the transition probability η. The emission probabilities can be
either set equal to the insertion and deletion probabilities of the word similarity model
(Durbin et al., 1998) or can be specified separately based on the token frequencies in the
dataset (Mackay and Kondrak, 2005).

The final log-odds similarity score of a word pair is calculated by dividing the Viterbi
or Forward probability by the probability generated by the random model, and subse-
quently taking the logarithm of this value. When using the Viterbi algorithm the regular
log-odds score is obtained, while using the Forward algorithm yields the Forward log-
odds score (Mackay, 2004). Note that there is no need for additional normalisation; by
dividing two models we are already implicitly normalising. Obviously, the time com-
plexity of the log-odds algorithm is similar to the time complexity of the Forward and
Viterbi algorithms, O(TN2).

46 Dialect pronunciation comparison using Pair Hidden Markov Models

3.3.2 Finding the best model parameters

Unfortunately, there is no method known that can find the model parameters that will
in general maximise P (O|µ). However, the best model parameters can be estimated by
applying an Expectation Maximisation technique, known as the Baum-Welch algorithm
(Baum et al., 1970) which uses the Forward and Backward algorithms introduced earlier.
The Baum-Welch algorithm iteratively reestimates the transition and emission probabil-
ities until a local optimum is found and has time complexity O(TN2), where N is the
number of states and T is the length of the observation sequence.

The Baum-Welch algorithm

Intuitively, the transition probability aij can be calculated by dividing the number of
transitions from state i to state j by the total number of transitions from state i for a series
of observations O in a model µ. Unfortunately this probability cannot be determined
directly because the state path is unknown in a Hidden Markov Model. However, we
can estimate this probability by dividing the expected number of transitions from state i
to state j by the expected number of transitions from state i (Jurafsky and Martin, 2000).
We will first define the probability ξ as the probability of being in state i at time t and
state j at time t + 1. More formally:

ξt(i, j) = P (Xt = i, Xt+1 = j|O, µ). (3.6)

The following holds according to the laws of probability:

P (X|O, µ) =
P (X, O|µ)
P (O|µ)

. (3.7)

And thus

ξt(i, j) =
P (Xt = i, Xt+1 = j, O|µ)

P (O|µ)
. (3.8)

Recall that the probability of being in state i at time t after having seen the partial obser-
vation sequence o1 · · · ot is given by the Forward variable αi(t) in (3.1). Furthermore, the
probability of going from state i to state j can be calculated by multiplying the transition
probability aij with the emission probability ej(ot+1). Finally, the probability of seeing
the partial observation sequence ot+1 · · · oT given that the state is j is represented by the
Backward variable βj(t) in (3.3). Hence, we can rewrite (3.8) to:

ξt(i, j) =
αi(t)aijej(ot+1)βj(t + 1)

P (O|µ)
. (3.9)

3.3 The Pair Hidden Markov Model 47

Because P (O|µ) is equal to the Forward probability or Backward probability (Table 3.1
and 3.3), we can also calculate P (O|µ) by combining both probabilities. Note that we
have to sum αk(t)βk(t) over all states k to take all state paths into account:

ξt(i, j) =
αi(t)aijej(ot+1)βj(t + 1)

N∑
k=1

αk(t)βk(t)

. (3.10)

Summing ξt over all t gives the expected number of transitions from state i to state j. Di-
viding this value by the expected number of transitions from state i yields the estimated
transition probability âij . More formally:

âij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

N∑
j=1

ξt(i, j)

. (3.11)

Similarly, an estimation of the emission probability ei(k) can be found by dividing the
expected number of times in state i symbol k is observed (i.e. pair of symbols in the
PairHMM) by the expected number of times state i is visited.

The probability γi(t) of being in state i at time t can be defined as:

γi(t) = P (Xt = i|O, µ). (3.12)

Due to (3.7) this equals:

γi(t) =
P (Xt = i, O|µ)

P (O|µ)
. (3.13)

Using a similar conversion as in (3.9) and (3.10), we can rewrite this to:

γi(t) =
αi(t)βi(t)

N∑
j=1

αj(t)βj(t)

. (3.14)

Summing γi over all t gives the expected number of times state i is visited. This can be
used to estimate the emission probability êi(k) as shown in (3.15). Note that the numera-
tor in (3.15) indicates how often symbol k is observed in state i.

48 Dialect pronunciation comparison using Pair Hidden Markov Models

êi(k) =

T∑
t=1
ot=k

γi(t)

T∑
t=1

γi(t)

. (3.15)

Finally, the initial state probability πi can be estimated by the number of times state i is
visited at time t = 1. Due to (3.12) the estimation of the initial state probability π̂i is given
by:

π̂i = γi(1). (3.16)

The PairHMM Baum-Welch algorithm

The transformation of these formulas to the PairHMM case is straightforward; the main
difference is that instead of summing over t in (3.11) and (3.15), we have to sum over the
positions u and v in the two observation streams x and y (of length U and V respectively)
using the PairHMM Forward and Backward algorithms (see Table 3.2 and 3.4).

To estimate the transition probabilities of the PairHMM, we first transform (3.10) into:

ξu,v(i, j) =
fi(u, v)aijej(�1)bj(�2, �3)

N∑
k=1

fk(u, v)bk(u, v)

. (3.17)

The value of the transition probability aij depends on states i and j and can be found
in Figure 3.1. For example, if state i is M and state j is X, the value of aij equals δ. The
emission probability ej depends on state j and on the symbol or symbol pair �1:

• when state j equals the substitution state M: ej(xu+1, yv+1) = pxu+1yv+1

• when state j equals the deletion state X: ej(xu+1) = qxu+1

• when state j equals the insertion state Y: ej(yv+1) = qyv+1

The indices (�2, �3) also depend on state j:

• when state j equals M: (�2, �3) = (u + 1, v + 1)

• when state j equals X: (�2, �3) = (u + 1, v)

• when state j equals Y: (�2, �3) = (u, v + 1).

3.3 The Pair Hidden Markov Model 49

Using (3.17) and the fact that all word pairs (referred to by index w) are used in estimating
the transition probabilities, we can transform (3.11) into:

âij =

∑
w

Ũ∑
u=0

Ṽ∑
v=0

ξw
u,v(i, j)

∑
w

Ũ∑
u=0

Ṽ∑
v=0

N∑
j=1

ξw
u,v(i, j)

. (3.18)

The value of Ũ and Ṽ depends on the final emitting state:

• when the final emitting state is M: Ũ = U − 1 and Ṽ = V − 1

• when the final emitting state is X: Ũ = U − 1 and Ṽ = V

• when the final emitting state is Y: Ũ = U and Ṽ = V − 1.

To estimate the emission probabilities of the PairHMM we can transform equation (3.14)
into:

γi(u, v) =
fi(u, v)bi(u, v)

N∑
j=1

fj(u, v)bj(u, v)

. (3.19)

Using (3.19) and the fact that all word pairs (referred to by index w) are used in estimating
the emission probabilities, we can transform (3.15) into:

êi(k) =

∑
w

U∑
u=0
�1

V∑
v=0
�2

γw
i (u, v)

∑
w

U∑
u=0

V∑
v=0

γw
i (u, v)

. (3.20)

Where �1 is defined as xu = kx when i equals the substitution or deletion state (in the
insertion state a gap is present in observation stream x therefore kx is not present) and
�2 is defined as yv = ky when i equals the substitution or insertion state (in the deletion
state ky is not present).

In our PairHMM, the initial state probabilities are set equal to the probability of going
from the substitution state M to that state (see Figure 3.1). For completeness note that it is
also possible to estimate the initial state probability πi by estimating the number of times
state i is visited at the start of both strings (for all words w), effectively transforming
(3.16) into:

50 Dialect pronunciation comparison using Pair Hidden Markov Models

π̂i =
∑
w

γw
i (0, 0). (3.21)

After starting with the initial probabilities, Π, A, E of the model µ we can estimate new
parameters Π̂, Â, Ê of the new model µ̂ by using the calculations explained above. Baum
et al. (1970) proved that

P (O|µ̂) ≥ P (O|µ). (3.22)

Because the probabilities will only be equal at a critical point (e.g., a local maximum), we
can start with a random set of probabilities and run the procedure above to increase the
quality of the model with respect to the training data. This procedure can be repeated
until P (O|µ̂) = P (O|µ) and the best model is obtained for the specific set of starting
probabilities. Because the Baum-Welch algorithm applies the Forward and Backward
algorithms, all possible alignments of two words are considered in each training iteration
(e.g., see the alignments for the observation sequences [a b] and [b a] at page 40).

Calculating dialect distances

When the parameters of the complete model have been determined, the model can be
used to calculate the alignment probability for every word pair. As in Mackay and Kon-
drak (2005) and explained earlier, we use the Forward and Viterbi algorithms in both their
regular (normalised for length) and log-odds form to calculate similarity scores for every
word pair. Subsequently, the distance between two dialectal varieties can be obtained by
calculating all word pair scores and averaging them.

3.3.3 A parallel implementation of the PairHMM

The original PairHMM software, created by Wesley Mackay (2004) and kindly made
available by Grzegorz Kondrak, was not implemented for use on a parallel computer.
Because we had two very large datasets, consisting of approximately 20 million and 100
million word pairs for Belgium and the Netherlands respectively, we decided to imple-
ment a parallel version of the PairHMM software.1 A parallel implementation makes it
possible to speed up the computation time needed by dividing the work among multiple
processors. In our case, the speedup of the training and scoring algorithms by using a
parallel implementation was approximately linear (e.g., using 2 processors reduced pro-
cessing time by 50%). In the following sections the conversion of the training and scoring
algorithms is explained in detail.

1In addition we also found and corrected some errors in the original source code.

3.3 The Pair Hidden Markov Model 51

Conversion of the training algorithm

The original version of the training software expected a data file consisting of all word
pairs (every word pair on a single line) and thus read the input data in the following way
(for one iteration):

ARRAY params := read_model_parameters()

ARRAY results := initial_values

FOR every_line_in_the_inputfile DO
word1 := read_first_word(line)
word2 := read_second_word(line)
results := results + train_PHMM(word1, word2, params)

END

generate_new_model_parameters(results)

Because of the size of our dataset, this meant using an input file of approximately 10
gigabytes. Obviously, this size imposed a large bottleneck to the system. Therefore, we
adapted the program to generate all word pairs on the fly from the available dialect files
(containing all dialectal variants for a single meaning):

ARRAY params := read_model_parameters()

ARRAY results := initial_values

FOR file := 1 TO all_dialect_files DO
FOR line1 := 1 TO last_line DO
FOR line2 := (line1 + 1) TO last_line DO
word1 := get_word_from_line(line1)
word2 := get_word_from_line(line2)
results := results +

train_PHMM(word1, word2, params)
END

END
END

generate_new_model_parameters(results)

This implementation reduced the memory requirements by a factor of 3500 to about 3
megabytes. To prevent order effects in training, every word pair was considered twice
(e.g., wa − wb and wb − wa). Note that for simplicity this is not shown in the code. As
can be observed, the final result is obtained by calculating the results of the train_PHMM
method for every word pair in the dataset and adding them together (corresponding to
the sum over all w in (3.18), (3.20) and (3.21)).

52 Dialect pronunciation comparison using Pair Hidden Markov Models

Because the input data is separated into 562 separate files instead of a single file, and
the parameters remain the same during one iteration, a parallel implementation of the
PairHMM training is straightforward (the first IF line shows the division of work among
all processors by using the modulo operation):

ARRAY params := read_model_parameters()

ARRAY results := initial_values

FOR file := 1 TO all_dialect_files DO
IF (file MOD total_nr_of_processors) == processor_id THEN
FOR line1 := 1 TO last_line DO
FOR line2 := (line1 + 1) TO last_line DO
word1 := get_word_from_line(line1)
word2 := get_word_from_line(line2)
results := results +

train_PHMM(word1, word2, params)
END

END
END

END

IF all_procs_finished AND proc_id == output_processor THEN
add_results_of_all_processors_together()
generate_new_model_parameters(results)

END

Thus, every processor obtains an equal share of the input files to train with, calculates
the sum of the train_PHMM method for all word pairs in the designated files and sends
the results to the processor generating the output. This processor then adds all values
together and generates the new parameters of the model, which are used in the next
iteration.

Conversion of the scoring algorithms

As well as for the training software, the original version of the scoring software also ex-
pected a data file consisting of all word pairs as input, again introducing a large memory
bottleneck.

In the scoring phase a similarity score has to be calculated for every dialect pair based
on the word pair alignments. Therefore the input was arranged in files consisting of all
words for one specific dialectal variety. The line numbers in every file correspond with a
single meaning (e.g., line 2 in every file contains a dialectal variant of the word ’ape’).

Also in this case parallelisation is straightforward (again, the first IF line in the code
below shows the division of work among all processors). Every processor can calculate
the similarity score for a single dialect pair independently by adding all alignment scores
for the word pairs. Because not all words have to be present in the input files, the scores
are averaged afterwards (this is not shown in the code below):

3.4 Results 53

ARRAY params := read_model_parameters()

ARRAY result = 0

FOR place1 := 1 TO all_place_files DO
IF (place1 MOD total_nr_of_processors) == processor_id THEN
FOR place2 := (place1 + 1) TO all_place_files DO
FOR line := 1 TO last_line DO
word1 := get_word_from_line_of_file(place1, line)
word2 := get_word_from_line_of_file(place2, line)
result[place1,place2] := result[place1,place2] +

test_PHMM(word1, word2, params)
END

END
END

END

IF all_proc_finished AND proc_id == output_processor THEN
gather_all_results_and_output()

END

Thus, every processor obtains an equal share of the input files to test. Because every pro-
cessor calculates a distinct set of dialect distances, no processor will write to an already
filled part of the result array. Finally note that test_PHMM can be one of all available
PairHMM scoring algorithms, i.e. the Viterbi or Forward algorithms in their regular or
log-odds form.

3.4 Results

To obtain the best model probabilities, we trained the PairHMMs with all data available.
For the Netherlands a PairHMM was trained with all data from the 424 Netherlandic
localities, while for Belgium a PairHMM was trained with all data from the 189 Belgian
localities. For every dialectal variety there were on average 540 words with an average
length of 5 tokens. As mentioned earlier, to prevent order effects in training every word
pair was considered twice (e.g., wa − wb and wb − wa). Therefore, the total number of
word pairs considered in one training iteration was almost 20 million for Belgium and
almost 100 million for the Netherlands.

After starting with more than 6700 uniform initial substitution probabilities, 82 insertion
and deletion probabilities and 5 transition probabilities, convergence was reached for the
data of the Netherlands after nearly 1500 iterations, taking 10 parallel processors each
more than 10 hours of computation time. For Belgium, more than 1250 iterations were
needed to reach convergence on 2500 substitution probabilities, 50 insertion and deletion
probabilities and 5 transition probabilities (taking 10 parallel processors each more than
3 hours of computation time).

In the following paragraphs we will discuss the quality of the trained substitution proba-
bilities as well as comment on the dialectological results obtained with the trained mod-
els.

54 Dialect pronunciation comparison using Pair Hidden Markov Models

3.4.1 Trained substitution probabilities

We are interested both in how well the overall sequence distances assigned by the trained
PairHMMs reveal the dialectological landscape of the Netherlands and Belgium, and also
in how well segment distances induced by the Baum-Welch training reflect linguistic re-
ality. A first inspection of the latter is a simple check on how well standard classifications
are respected by the segment distances induced.

Intuitively, the probabilities of substituting a vowel with a vowel or a consonant with
a consonant (i.e. same-type substitution) should be higher than the probabilities of sub-
stituting a vowel with a consonant or vice versa (i.e. different-type substitution). Also
the probability of substituting a phonetic symbol with itself (i.e. identity substitution)
should be higher than the probability of a substitution with any other phonetic symbol.
To test this assumption, we compared the means of the above three substitution groups
for vowels, consonants and both types together.

In line with our intuition, we found a higher probability for an identity substitution as
opposed to same-type and different-type non-identity substitutions, as well as a higher
probability for a same-type substitution as compared to a different-type substitution. For
both PairHMMs this result was highly significant in all cases: vowels (all p′s < 0.05),
consonants (all p′s < 0.001) and both types together (all p′s < 0.001).

3.4.2 Vowel substitution scores compared to acoustic distances

PairHMMs assign high probabilities (and scores) to the emission of segment pairs that
are more likely to be found in training data. Thus we expect frequent dialect correspon-
dences to acquire high scores. Since phonetic similarity effects alignment and segment
correspondences, we hypothesise that phonetically similar segment correspondences will
be more common than phonetically remote ones, more specifically that there should be a
negative correlation between PairHMM-induced segment substitution probabilities pre-
sented above and phonetic distances.

We focus on segment distances among vowels, because it is straightforward to suggest
a measure of distance for these (but not for consonants). Phoneticians and dialectolo-
gists use the two first formants (the resonant frequencies created by different forms of
the vocal cavity during pronunciation) as the defining physical characteristics of vowel
quality. The first two formants correspond to the articulatory vowel features height and
advancement. We follow variationist practice in ignoring third and higher formants. Us-
ing formant frequencies we can calculate the acoustic distances between vowels.

Because the occurrence frequency of the phonetic symbols influences substitution prob-
ability, we do not compare substitution probabilities directly to acoustic distances. To
obtain comparable scores, the substitution probabilities are divided by the product of
the relative frequencies of the two phonetic symbols used in the substitution. Because
substitutions involving similar infrequent segments now get a much higher score than

3.4 Results 55

Figure 3.3. Conversion of frequency to Bark scale (Traunmüller, 1990)
.

substitutions involving similar, but frequent segments, the logarithm of the score is used
to bring the respective scores into a comparable scale.

In the program PRAAT we find Hertz values of the first three formants for Dutch vowels
pronounced by 50 male (Pols et al., 1973) and 25 female (Van Nierop et al., 1973) speakers
of standard Dutch. The vowels were pronounced in a /hVt/ context, and the quality
of the phonemes for which we have formant information should be close to the vowel
quality used in the GTRP transcriptions. By averaging over 75 speakers we reduce the
effect of personal variation. For comparison we chose only vowels that are pronounced
as monophthongs in standard Dutch, in order to exclude interference of changing diph-
thong vowel quality with the results. Nine vowels were used: /i, I, y, Y, E, a, A, O, u/.

We calculated the acoustic distances between all vowel pairs as a Euclidean distance of
the formant values. Since our perception of frequency is non-linear, using Hertz values of
the formants when calculating the Euclidean distances would not weigh F1 enough. We
therefore transform frequencies to Bark scale (see Figure 3.3) in better keeping with hu-
man perception. We used the formula of Traunmüller (1990) shown in (3.23) for this trans-
formation, since it is most suitable for speech analysis (see Carter, 2002: Appendix 1).

z =
26.81f

1960 + f
− 0.53. (3.23)

Low frequency correction: if z < 2, z′ = z + 0.15(2− z).
High frequency correction: if z > 20.1, z′ = z + 0.22(z − 20.1).

56 Dialect pronunciation comparison using Pair Hidden Markov Models

Figure 3.4. Predicting acoustic distances based on PairHMM scores of the Netherlands.
Acoustic vowel distances are calculated via Euclidean distance based on the first two for-
mants measured in Hertz, normalised for speaker. r = −0.72

For the Netherlands, the correlation between the acoustic vowel distances based on two
formants in Bark and the logarithmical and frequency corrected PairHMM substitution
scores is r = −0.65 (p < 0.01). But Lobanov (1971) and Adank (2003) suggested us-
ing standardised z-scores, where the normalisation is applied over the entire vowel set
produced by a given speaker (one normalisation per speaker). This helps in smoothing
the voice differences between men and women. Normalising frequencies in this way re-
sulted in a correlation of r = −0.72 (p < 0.001) with the PairHMM substitution scores
of the Netherlands. Figure 3.4 visualises this result. Both Bark scale and z-values gave
somewhat lower correlations when the third formant was included in the measures.

The Belgian data did not include the vowels /I/ and /Y/, but also in this case we found
(slightly weaker) significant correlations between the PairHMM substitution scores and
the acoustic vowel distances based on two formants (Bark scale: r = −0.61, p < 0.01;
standardised z-scores: r = −0.59, p < 0.01).

The strong correlations demonstrate that the PairHMM scores reflect phonetic (dis)sim-
ilarity. The higher the probability that vowels are aligned in PairHMM training, the
smaller the acoustic distance between two segments. We conclude therefore that the
PairHMMs indeed align linguistically corresponding segments in accord with phonetic
similarity. This likewise confirms that dialect differences tend to be acoustically slight
rather than large, and suggests that PairHMMs are attuned to the slight differences which

3.4 Results 57

accumulate locally during language change. Also we can be more optimistic about com-
bining segment distances and sequence distance techniques, in spite of Heeringa(2004;
Chapter 4) who combined formant track segment distances with Levenshtein distances
without obtaining improved results.

3.4.3 Dialectological results

To see how well the PairHMM results reveal the dialectological landscape of the Nether-
lands and Belgium, we calculated the dialect distances for both countries separately with
the Viterbi and Forward algorithms (in both their regular and log-odds versions) using
the trained model parameters.

To assess the quality of the dialectal results, we use the LOCAL INCOHERENCE measure-
ment which measures the degree to which geographically close varieties also represent
linguistically similar varieties (Nerbonne and Kleiweg, 2007).

The LOCAL INCOHERENCE measurement is formally defined as:

Il =
1
n

n∑
i=1

DL
i −DG

i

DG
i

. (3.24)

Where

DL
i =

k∑
j=1

dL
i,j · 2−0.5j (3.25)

DG
i =

k∑
j=1

dG
i,j · 2−0.5j (3.26)

dL
i,j , d

G
i,j : geographical distance between locations i and j

dL
i,1···n−1 : geographical distance sorted by increasing linguistic difference

dG
i,1···n−1 : geographical distance sorted by increasing geographical distance.

In short, for a given location i all other locations are sorted in two ways: based on their in-
creasing geographic distance and based on their increasing linguistic distance. The value
of DG

i will depend on the geographical distance from location i to the k geographically
nearest locations and the value of DL

i will depend on the geographical distance to the
k linguistically nearest locations. In this thesis, we fix k to the value 8, analogously to
Nerbonne and Kleiweg (2007). Due to the exponential function in (3.25) and (3.26) more
weight is given to (geographically or linguistically) closer locations. Because linguistic
distance should preferably increase with geographic distance, the ideal situation would

58 Dialect pronunciation comparison using Pair Hidden Markov Models

be that DL
i = DG

i for all locations i. In this case Il would equal 0, which is also the lowest
value. Higher values of Il indicate poorer dialectal results. However note that LOCAL

INCOHERENCE cannot be used as a “gold standard” for quality in dialectological mea-
surements, but lacking a better evaluation method, rather only as an indicative heuristic.

Because the exact value of Il (in a non-ideal situation) depends on the specific geographic
distances, comparing the value of Il for different measurements only makes sense for the
same set of locations. Therefore, the LOCAL INCOHERENCE measurement cannot be used
to compare the effectiveness of a certain linguistic measurement for the Netherlands as
opposed to Belgium.

Just as Mackay and Kondrak (2005), we found the overall best performance (lowest LO-
CAL INCOHERENCE) was obtained using the log-odds version of the Viterbi algorithm,
with distinct frequency-based insertion and deletion probabilities for the random model.
The Forward log-odds algorithm (with distinct probabilities for the random model) was
a good runner-up with only slightly lower performance. For both log-odds algorithms,
setting the insertion and deletion probabilities of the random model equal to those of
the word similarity model had a negative impact on performance. Finally, applying the
regular Forward and Viterbi algorithms to obtain the dialect distances gave the worst
performance.

Following Mackay and Kondrak (2005), we also experimented with a modified PairHMM
obtained by setting non-substitution parameters constant. Rather than using the transi-
tion, insertion and deletion parameters (see Figure 3.1) of the trained model, we set these
to a constant value as we are most interested in the effects of the substitution parameters.
We indeed found slightly increased performance (in terms of LOCAL INCOHERENCE) for
the simplified model with constant transition parameters using the Viterbi log-odds al-
gorithm (with distinct probabilities for the random model). However, since there was
a very high correlation (Netherlands: r = 0.98; Belgium r = 0.97) between the results
of the full and the simplified model and the resulting clustering was also highly similar,
we will use the Viterbi log-odds algorithm using all trained parameters to represent the
results obtained with the PairHMM method.

3.4.4 A comparison between PairHMM and Levenshtein results

In this comparison we use a slightly modified version of the regular Levenshtein distance
algorithm, which enforces a linguistic syllabicity constraint: only vowels may match
with vowels, and consonants with consonants. The specific details are described in Sec-
tion 2.3.1.

The PairHMMs yielded dialectological results quite similar to those of Levenshtein dis-
tance. The LOCAL INCOHERENCE of the two methods was similar, and the dialect distance
matrices obtained from the two techniques correlated highly (Netherlands: r = 0.89; Bel-
gium: r = 0.94). Given that the Levenshtein distance has been shown to yield results that
are consistent (Cronbach’s α = 0.99) and valid when compared to dialect speakers judge-

3.4 Results 59

ments of similarity (r ≈ 0.7), this means in particular that the PairHMMs are detecting
dialectal variation quite well.

Figure 3.5 shows the dialectal maps for the results obtained using the Levenshtein algo-
rithm (top) and the PairHMM algorithm (bottom) for the Netherlands. The maps on the
left show a clustering in ten groups based on UPGMA (Unweighted Pair Group Method
with Arithmetic mean; see Heeringa, 2004 for a detailed explanation). In these maps pho-
netically close dialectal varieties are marked with the same symbol. However note that
the symbols can only be compared within a map, not between the two maps (e.g., a di-
alectal variety indicated by a square in the top map does not need to have a relationship
with a dialectal variety indicated by a square in the bottom map). Because clustering is
unstable, in that small differences in input data can lead to large differences in the clas-
sifications derived, we repeatedly added random small amounts of noise to the data and
iteratively generated the cluster borders based on the noisy input data. Only borders
which showed up during most of the 100 iterations are shown in the map. The maps in
the middle show the most robust cluster borders; darker lines indicate more robust bor-
ders. The maps on the right show a vector at each locality pointing in the direction of the
region it is phonetically most similar to.

A number of observations can be made on the basis of these maps. The most important
observation is that the maps show very similar results. For instance, in both methods
a clear distinction can be seen between the Frisian varieties (north) and their surround-
ings as well as the Limburg varieties (south) and their surroundings. Some differences
can also be observed. For instance, at first glance the Frisian cities among the Frisian
varieties are separate clusters in the PairHMM method, while this is not the case for the
Levenshtein method. Since the Frisian cities differ from their surroundings a great deal,
this point favours the PairHMM. However, when looking at the deviating vectors for the
Frisian cities in the two vector maps, it is clear that the techniques again yield similar
results.

Figure 3.6 shows the dialectal maps for the results obtained using the Levenshtein al-
gorithm (left) and the PairHMM algorithm for Belgium (right). Despite that there are
slight differences between the maps (e.g., the border strength in the middle maps), again
the main observation is that both methods yield very similar results. A more detailed
description of the results using the Levenshtein distance on the GTRP data of both the
Netherlands and Belgium can be found in Chapter 2.

Although the PairHMM method is much more sophisticated than the Levenshtein me-
thod, it yields very similar results. This may be due to the fact that the datasets are
large enough to compensate for the lack of sensitivity in the Levenshtein technique, and
the fact that we are evaluating the techniques at a high level of aggregation (average
differences in 540-word samples).

60 Dialect pronunciation comparison using Pair Hidden Markov Models

Figure 3.5. Netherlandic dialect distances for Levenshtein method (top) and PairHMM
method (bottom). The maps on the left show the ten main clusters for both methods, in-
dicated by distinct symbols. Note that the shape of these symbols can only be compared
within a map, not between the top and bottom maps. The maps in the middle show robust
cluster borders (darker lines indicate more robust cluster borders) obtained by repeated clus-
tering using random small amounts of noise. The maps on the right show for each locality
a vector towards the region which is phonetically most similar. See section 3.4.4 for further
explanation.

3.4 Results 61

Figure 3.6. Belgian dialect distances for Levenshtein method (left) and PairHMM method
(right). The maps at the top show the six main clusters for both methods, indicated by distinct
symbols. Note that the shape of these symbols can only be compared within a map, not
between the left and right maps. The maps in the middle show robust cluster borders (darker
lines indicate more robust cluster borders) obtained by repeated clustering using random
small amounts of noise. The maps at the bottom show for each locality a vector towards the
region which is phonetically most similar. See section 3.4.4 for further explanation.

62 Dialect pronunciation comparison using Pair Hidden Markov Models

3.4.5 Combining PairHMM probabilities and the Levenshtein distance

Besides using the algorithms of the PairHMM explained above, it is also possible to use
the trained emission probabilities in assigning costs to the substitution, insertion and
deletion operations in the regular Levenshtein algorithm (see Section 2.3.1). First, all
probabilities are converted to comparable scores by correcting for their frequency and
taking the logarithm of the resulting value (see Section 3.4.2). Subsequently these scores
are converted to costs by subtracting the score from 0, mapping a high score (i.e. a likely
substitution) to a low cost and vice versa. The new Levenshtein distance can now be
calculated by taking into account the distinct costs for each substitution, insertion and
deletion. We will refer to this version of the Levenshtein distance as LLW (i.e. Levenshtein
distance with learnt weights).

Again the use of a more sophisticated approach did not yield distinct results. The cor-
relation between the dialect distances calculated with the LLW and the other algorithms
(PairHMM Viterbi log-odds and regular Levenshtein distance) was r > 0.95 for both the
Netherlands and Belgium. Furthermore the LOCAL INCOHERENCE of the three methods
did not differ significantly. The similarity between the PairHMM and the LLW approach
is visualised with vector maps for the Netherlands and Belgium in Figure 3.7 and 3.8
respectively. In a vector map, a vector at each locality is pointing in the direction of the
region it is phonetically most similar to. For completeness note that the vector maps
obtained using the regular Levenshtein algorithm are shown in Figure 3.5 and 3.6.

Figure 3.7. Vector map for PairHMM (left) and Levenshtein with learnt weights approach
(right). The maps show for each (Netherlandic) locality a vector towards the region which is
phonetically most similar.

3.5 Discussion 63

Figure 3.8. Vector map for PairHMM (top) and Levenshtein with learnt weights approach
(bottom). The maps show for each (Belgian) locality a vector towards the region which is
phonetically most similar.

3.5 Discussion

The presented research confirms Mackay’s (2004) work showing that PairHMMs align
linguistic material well and that they induce reasonable segment distances at the same
time. We have extended that work by applying PairHMMs to dialectal data, and by
evaluating the induced segment distances via their correlation with acoustic differences.
We noted above that it is not clear whether the dialectological results improve on the
simple Levenshtein measures, and that this may be due to the level of aggregation and
the large sample sizes. But we would also like to test PairHMMs on a dataset for which
more sensitive validation is possible, e.g. the Norwegian set for which dialect speakers
judgements of proximity is available (Heeringa et al., 2006); this is clearly a point at which
further work would be rewarding.

At a more abstract level, we emphasise that the correlation between acoustic distances on
the one hand and the segment distances induced by the PairHMMs on the other confirm
both that alignments created by the PairHMMs are linguistically responsible, and also
that this linguistic structure influences the range of variation. The segment distances
induced by the PairHMMs reflect the frequency with which such segments need to be
aligned in Baum-Welch training. It would be conceivable that dialect speakers used all
sorts of correspondences to signal their linguistic provenance, but they do not. Instead,
they tend to use variants which are linguistically close at the segment level.

Finally, we note that the view of diachronic change as on the one hand the accumulation

64 Dialect pronunciation comparison using Pair Hidden Markov Models

of changes propagating geographically, and on the other hand as the result of a tendency
toward local convergence suggests that we should find linguistically similar varieties
nearby rather than further away. The segment correspondences PairHMMs induce cor-
respond to those found closer geographically.

We have assumed a dialectological perspective here, focusing on local variation (Dutch),
and using similarity of pronunciation as the organising variationist principle. For the
analysis of relations among languages that are further away from each other—temporal-
ly and spatially—there is substantial consensus that one needs to go beyond similarity
as a basis for postulating grouping. Thus phylogenetic techniques often use a model
of relatedness aimed not at similarity-based grouping, but rather at creating a minimal
genealogical tree. Nonetheless similarity is a satisfying basis of comparison at more local
levels.

4 Dialect pronunciation comparison and
spoken word recognition

Abstract∗

Two adaptations of the regular Levenshtein distance algorithm are proposed based on
psycholinguistic work on spoken word recognition. The first adaptation is inspired
by the Cohort Model which assumes that the word-initial part is more important for
word recognition than the word-final part. The second adaptation is based on the
notion that stressed syllables contain more information and are more important for
word recognition than unstressed syllables. The adapted algorithms are evaluated on
the GTRP data of the Netherlands and Belgium and a relatively small Norwegian
dataset for which dialect speakers judgements of proximity is available.

4.1 Introduction

The Levenshtein distance algorithm is a popular sequence-based method used to mea-
sure the perceptual distances between dialects (Heeringa, 2004). In the Levenshtein algo-
rithm every edit operation is assigned a certain cost (in our case all operations have the
same cost, 1; see also 2.3.1). The location of the edit operations is not relevant in deter-
mining the cost; a substitution at the first position of both strings has the same cost as a
substitution at the final position of both strings. While this is a sensible notion, there are
some theories of spoken word recognition which suggest another approach.

Although it is natural to examine psycholinguistic theories of word recognition as a
source of ideas about which parts of words might be most important to dialect percep-
tion, we should also be aware that word recognition and dialect perception are different.
The task of spoken word recognition is to determine which word was said, while the pur-
pose of dialect variation is to signal the speaker’s provenance. Thus aspects of the speech
signal that support word recognition may not support inferences about the speaker’s (ge-
ographic) identity. This is related to the semiotic division between the relation of signs to
denotations (or meanings) on the one hand and the relation of signs to senders or inter-
preters on the other (Bühler, 1934). From the point of view of communication (or word
recognition), dialect variation only adds noise to a signal. So we shall not pretend to
∗This text was submitted in a slightly different form to the Workshop on Computational Phonology, Borovets,

Bulgaria (2007) as: M. Wieling, and J. Nerbonne. Dialect Pronunciation Comparison and Spoken Word
Recognition.

66 Dialect pronunciation comparison and spoken word recognition

criticise theories of word recognition, even in case it turns out that they contribute little
to dialect perception. But it is equally plausible that the mechanisms that make some
parts of the speech signal more important for recognition and perception would also be
important dialectologically.

The Cohort Model was the first very influential theory on spoken word recognition. The
Cohort theory (Marslen-Wilson and Welsh, 1978; Marslen-Wilson, 1987) proposes that
word recognition occurs by activating words in memory based on the sequential (left-to-
right) processing of the input sound. The first phoneme of a word activates all words
which start with that sound, the word-initial cohort. Additional phonemes narrow the co-
hort by ruling out members which do not match the heard sound sequence. For instance
after hearing the first phoneme of the word ‘elephant’, the words ‘elephant’, ‘elevator’
and ‘enemy’ are activated. After hearing the second phoneme the cohort is reduced to
the words ‘elephant’ and ‘elevator’. Subsequent phonemes will reduce the number of
items in the cohort until only the word ‘elephant’ remains and is recognised. Hence, the
start of the word is more important than later parts of the word (Marslen-Wilson and
Zwitserlood, 1989). Even though the Cohort Model has a number of drawbacks (e.g.,
correct recognition of a word is not possible when the start of a word is misheard) and
other theories of word recognition have been proposed which do not rely on left-to-right
activation (see Jusczyk and Luce, 2002 and Luce and McLennan, 2005), the start of a word
is nevertheless important in word recognition (Walley, 1988).

There is also evidence for the importance of stressed syllables in word recognition. First,
stressed syllables are more easily identified out of their original context than unstressed
syllables (Cutler et al., 1997). And second, stressed syllables have been found to be more
informative than unstressed syllables (Altman and Carter, 1989).

The Levenshtein algorithm can be easily extended to incorporate these theories. Co-
hort theory can be modelled by weighting differences in the beginning of both strings
more heavily than differences at the end. The importance of stressed syllables can be
modelled by weighting differences in stressed syllables more strongly than differences in
unstressed syllables.

4.2 Material

In this chapter we use the same data as introduced in Section 2.2.1, the GTRP data for
both the Netherlands and Belgium (separately as suggested in Section 2.4.1). Further-
more we use a Norwegian dataset for which dialect speakers’ judgments of proximity
are available (Heeringa et al., 2006). The Norwegian dataset consists of 15 places for
which 58 different words of the fable ‘The North Wind and the Sun’ were phonetically
transcribed. The perceptual distances were obtained by similarity judgements of groups
of high school pupils from all 15 places; the pupils judged all dialects on a scale from 1
(most similar to native dialect) to 10 (least similar to native dialect). Note that these per-
ceptual distances are not necessarily symmetrical; an inhabitant from region A may rate

4.3 Adapted Levenshtein distance algorithms 67

dialect B more different than an inhabitant from region B rates dialect A. In all datasets
stress was predominantly placed on the first syllable.

4.3 Adapted Levenshtein distance algorithms

It is straightforward to adapt the Levenshtein algorithm shown in Section 2.3.1 to allow
for custom weighting based on the positions i and j in both strings. The more general
algorithm is shown below. Note that the regular Levenshtein distance can be calculated
by setting COST_FUNCTION(i,j) to 1 for every i and j.

LEVEN_TABLE(0,0) = 0

FOR i := 1 TO LENGTH(string1)
LEVEN_TABLE(i,0) := LEVENTABLE(i-1, 0) + COST_FUNCTION(i,0)

END

FOR j := 0 TO LENGTH(string2)
LEVEN_TABLE(0,j) := LEVENTABLE(0, j-1) + COST_FUNCTION(0,j)

END

FOR i := 1 TO LENGTH(string1) DO
FOR j := 1 TO LENGTH(string2) DO

LEVEN_TABLE(i,j) :=
MIN(

LEVEN_TABLE(i-1, j) + INS_COST * COST_FUNCTION(i,j),
LEVEN_TABLE(i, j-1) + DEL_COST * COST_FUNCTION(i,j),
IF finalchar1 = finalchar2 THEN

LEVEN_TABLE(i-1, j-1) // no cost
ELSE

LEVEN_TABLE(i-1, j-1) + SUBST_COST * COST_FUNCTION(i,j)
END

)
END

END

LEVEN_DIST := LEVEN_TABLE(LENGTH(string1), LENGTH(string2))

As explained in Section 2.3.1, we use a slightly adapted version of the Levenshtein algo-
rithm displayed above. The modified Levenshtein algorithm enforces a linguistic syllab-
icity constraint: only vowels may match with vowels, and consonants with consonants.

4.3.1 Cohort inspired Levenshtein algorithms

In the Cohort Model the importance of a word segment is maximal at the onset of a word
and decreases from there until the end. This can be modelled by setting the cost of an edit
operation highest at the start of both strings, while gradually decreasing the cost when
traversing to the end of both strings.

We experimented with several weighting schemes to model the Cohort theory: a linear
decay, an exponential decay, a square root decay and a (natural) logarithmic decay of

68 Dialect pronunciation comparison and spoken word recognition

the cost. The respective cost functions are specified in the pseudocode below. Note that
the optimal parameters for the exponential and linear decay functions were defined by
experimentation.

// Exponential decay cost function
COST_FUNCTION(i,j) := POW(1.1, (LENGTH(string1) - i +

LENGTH(string2) - j))

// Linear decay cost function
COST_FUNCTION(i,j) := 0.2 * (LENGTH(string1) - i +

LENGTH(string2) - j) + 1

// Square root decay cost function
COST_FUNCTION(i,j) := SQRT(LENGTH(string1) - i +

LENGTH(string2) - j + 1)

// Logarithmic decay cost function
COST_FUNCTION(i,j) := LOG(LENGTH(string1) - i +

LENGTH(string2) - j + EXP(1))

Figure 4.1 visualises these cost functions for two strings which have an added length of
10 tokens. For every method the cost of an edit operation is highest at the start (left side
of the graph) and lowest at the end of the strings (right side of the graph). The final edit
operation in every cost function always has cost 1. The cost of earlier operations depends
on the position in both strings. For example, the cost of a different-token substitution
of the second character in string A with the first character in string B can be found by
looking at value 3 on the x-axis.

In the following we will refer to the Cohort-inspired Levenshtein algorithms as LEVEN-
COHORT algorithms.

4.3.2 Stress based Levenshtein algorithm

To model the idea that stressed syllables are more important than unstressed syllables,
the adapted Levenshtein algorithm ideally should assign a higher cost to edit operations
which occur in stressed syllables rather than in unstressed syllables.

Because it was not possible to identify the stressed syllable in every dataset and stress
was placed predominantly on the first syllable in all datasets1, the stress-based method
was approximated by assigning a larger cost to edit operations occurring within the first
three positions of both words. The resulting cost function is shown in the pseudocode
below.

1The Norwegian data at http://www.ling.hf.ntnu.no/nos appears to contain no non-initial stress.

4.3 Adapted Levenshtein distance algorithms 69

// Stress based cost function
HIGH_COST := 2
LOW_COST := 1

IF (i <= 3) AND (j <= 3) THEN
COST_FUNCTION(i,j) := HIGH_COST

ELSE
COST_FUNCTION(i,j) := LOW_COST

END

We will refer to the adapted Levenshtein distance algorithm as the LEVEN-STRESS algo-
rithm.

4.3.3 Length normalisation

It is obvious that pairs of longer strings will on average have a larger Levenshtein dis-
tance than pairs of shorter strings. This bias is even greater for the LEVEN-COHORT algo-
rithms because the average costs for edit operations are higher for longer strings than for
shorter strings (i.e. an initial edit operation will have a higher cost for longer strings than
shorter strings, while the final edit operation always has cost 1).

Because it is likely that dialect perception is word-based (Heeringa, 2004), it makes sense
to normalise the Levenshtein distance such that it is length independent. For the regu-
lar Levenshtein distance there are several normalisation methods. Heeringa et al. (2006)

Figure 4.1. Cost functions for the adapted Levenshtein algorithms. For every method the
cost of an edit operation is highest at the start (left side of the graph) and lowest at the end of
the strings (right side of the graph). The graph shows the position-dependent costs for two
strings which have an added length of 10 tokens. For all algorithms the final operation has a
cost of 1. The cost of earlier operations depends on the position in both strings.

70 Dialect pronunciation comparison and spoken word recognition

pointed out that normalisation by alignment length was the most natural procedure be-
cause then similarity and difference were each others’ inverses (i.e. sum to 1). Other
methods include normalising by the length of the longest string, normalising by the
length of the shortest string and normalising by the average string length.

Unfortunately these methods are not suitable to normalise the distances obtained with
the LEVEN-COHORT (or LEVEN-STRESS) algorithms. To see this, consider two different
strings of length 1. The regular Levenshtein distance of these strings is exactly 1 (a sin-
gle substitution). Because in this case both strings have the same length and the only
edit-operation involved is the substitution, all normalisation methods mentioned above
yield the same normalised value (in this case 1). It is easy to see that for two strings of
length 2 which do not have a character in common, the raw Levenshtein distance is 2
(two substitutions), while the normalised Levenshtein distance equals 1. Thus, in both
cases the normalised Levenshtein distance is the same. This makes sense because in both
situations the two strings are maximally different.

When considering the LEVEN-COHORT algorithm for two different strings of length 1, the
raw and normalised adapted Levenshtein distance again equal 1 (because the final edit
operation in every LEVEN-COHORT algorithm has cost 1). However when we increase
the string length for both strings with one character, the raw distance will increase with
a value larger than 1 (see Figure 4.1) and thus normalising by string length will insuffi-
ciently counterbalance the positional weighting and yield a higher relative distance for
longer strings. An example of this relative distance increase is shown in the table be-
low. The first line of numbers shows the raw distances, while the bottom line shows the
normalised distances for the linear LEVEN-COHORT algorithm.

r r o r o o r o o d
g g e g e e g e e l
1 2.4 4.2 6.4
1 1.2 1.4 1.6

Fortunately it is possible to construct a better normalisation method which can be applied
to the LEVEN-STRESS and LEVEN-COHORT algorithms. In the following section we will
adapt the method of normalisation by alignment length while also preserving the desired
feature that similarity and difference are each others’ inverses.

Normalisation by alignment cost

Instead of normalising by alignment length, we normalise by the cost of the alignment.
The cost of a specific alignment can be found by assuming that all aligned identical sym-
bols are replaced by (different-symbol) substitutions. The distance of the new alignment
(with the same length as the original alignment) is used for normalisation. Note that
this approach equals normalising by alignment length when the costs of all edit oper-
ation equal 1, because in that situation the alignment length is equal to the cost of the
alignment.

4.3 Adapted Levenshtein distance algorithms 71

To make this approach clear, consider a possible alignment (including the costs) using
the regular Levenshtein algorithm for two Dutch dialectal variants of the word ‘milk’,
[mO@lk@] and [mEl@k]:

m O @ l k @
m E l @ k
0 1 1 0 1 0 1

The total Levenshtein distance of these two words is 4. The cost of this alignment can
be calculated by replacing all identical symbol pairs with different-symbol substitutions
(additional costs are marked in boldface):

m O @ l k @
m̂ E l̂ @ k̂
1 1 1 1 1 1 1

The cost of this alignment is 7 and so the normalised Levenshtein distance is 4
7 . The

total similarity is equal to the additional costs (in boldface) introduced by replacing all
identical symbol pairs with different-symbol substitutions, in this case 3. Because the
normalised similarity is 3

7 , similarity and difference are each others’ inverses. As pointed
out earlier, these normalised values are equal to the values which are obtained by nor-
malising by alignment length.

To see that this normalisation approach can also be used when position-dependent costs
are used, consider the alignment (and corresponding edit operation costs) for the two
dialectal variants of the word ‘milk’ using the linear LEVEN-COHORT algorithm.

m O @ l k @
m E l @ k
0 2.4 2.2 0 1.6 0 1

The total LEVEN-COHORT distance of these two words is 7.2. The cost of this alignment
equals 13 and is calculated as follows:

m O @ l k @
m̂ E l̂ @ k̂
2.8 2.4 2.2 1.8 1.6 1.2 1

In this case the normalised LEVEN-COHORT distance equals 7.2
13 , while the normalised

similarity equals 5.8
13 .

The normalisation method introduced above will always yield normalised distance and
similarity values in the range [0, 1]. Because the cost of an alignment is equal to the sum

72 Dialect pronunciation comparison and spoken word recognition

of the similarity and the distance of that alignment, the normalised values will always
sum to 1 and thus are each others’ inverses when normalised. For instance, two identical
aligned strings of any length will have a normalised similarity of 1 (and distance of 0),
while two completely different strings of any length will have a normalised distance of 1
(and similarity of 0).

In the previous examples, the cost of a substitution did not depend on the symbols in-
volved. For instance, substituting an /a/ with an /e/ did not differ from substituting an
/a/ with an /o/ (if the positions were the same). However, when substitution costs vary,
like in Chapter 3, it is not immediately clear which substitution cost should be used to
calculate the similarity of two identical symbols (indicated in boldface in the examples
above). In that case we suggest using the highest substitution cost involving that symbol.

Heeringa et al. (2006) reported that the results using the raw Levenshtein distances were
a better approximation of dialect differences as perceived by dialect speakers than results
based on normalised Levenshtein distances. Because our normalisation method is com-
parable to the method Heeringa et al. (2006) used, we will examine if this is also the case
in this study.

4.4 Results

First we assessed the reliability of the distance measurements using Cronbach’s α (see
also Section 2.3.4). For the Norwegian distance measurements Cronbach’s α ranged be-
tween 0.86 and 0.87, while it was equal to 0.99 for the Belgian and Netherlandic distance
measurements. Because these values are much higher than the accepted threshold in so-
cial science (where α > 0.70 is regarded as acceptable) we conclude that our distance
measurements are highly consistent.

To evaluate the results, we used the LOCAL INCOHERENCE measurement described in
Section 3.4.3. Although the LOCAL INCOHERENCE cannot be used as a “gold standard”,
it can be used as an indicative heuristic for quality in dialectological measurements. Ad-
ditionally, the quality of the Norwegian distances was assessed by correlating them with
the perceptual distances.

We calculated the LOCAL INCOHERENCE values of the dialect distances obtained us-
ing the LEVEN-STRESS and LEVEN-COHORT algorithms on the Norwegian data and the
Netherlandic and Belgian GTRP data. Table 4.1 shows these values for both the nor-
malised as well as the unnormalised data. In calculating the LOCAL INCOHERENCE

values, the geographic distances for the Netherlands and Belgium were measured “as
the crow flies”, while we used travelling time for Norway due to its rugged landscape
(Gooskens, 2005). Because the LOCAL INCOHERENCE values are based on geographical
distance (or travel time), the values in Table 4.1 can only be compared within a single
column (i.e. dataset), but not between the three separate columns.

For the Belgian and Netherlandic dialectal data we can observe slightly improved results
(lower LOCAL INCOHERENCE) using the adapted algorithms as compared to the regular

4.4 Results 73

Levenshtein algorithm. The LEVEN-STRESS algorithm yields the best performance, while
the exponential LEVEN-COHORT algorithm performs worst. In contrast, for the Norwe-
gian data the best performance is obtained using the regular Levenshtein algorithm.

When inspecting the correlations of the Norwegian dialect distances with the perceptual
distances in Table 4.2 we observe a similar pattern. However, Heeringa et al. (2006) men-
tioned that, since dialect distances satisfy the triangle inequality (i.e. ∀x, y, z : d(x, y) ≤
d(x, z) + d(z, y)), the involved dialect distances cannot be seen as independent observa-
tions. We analyse the relationship between the computed dialect distances and the per-
ceptual distances by calculating the correlation coefficient, but its statistical significance
cannot be assayed in the usual way, e.g., via a table in a statistics test or via a software
package such as SPSS or R. To solve this problem the Mantel test (Bonnet and Van de
Peer, 2002) can be used, which determines the significance of the correlation by repeat-
edly permuting the matrix rows and columns and recalculating the correlation coeffi-
cient. By using this method, Heeringa et al. (2006) found that the correlation coefficients
needed to differ by more than 0.1 to indicate statistical significance. Hence, the different
algorithms all yield similar performance on the Norwegian dataset.

As mentioned earlier, Heeringa et al. (2006) indicated that normalising the Norwegian
dialect distances reduced performance. However as can be seen in Table 4.1 this is not
the case for the Netherlandic and Belgian distances. Normalising the Netherlandic dis-
tances improves results slightly, while normalising the Belgian distances improves re-
sults more clearly. Furthermore, Table 4.2 also shows no reduced performance for the
normalised Norwegian dialect distances when correlating them with the perceptual dis-
tances as compared to the unnormalised distances. When examining the Norwegian data
more closely, we note that the average word length is only 3.5 tokens. This means that our
position-sensitive weightings have relatively little opportunity to distinguish themselves.
It is therefore not surprising that the LEVEN-COHORT and LEVEN-STRESS approaches per-
form roughly the same as the regular Levenshtein algorithm.

NL BEL NOR
exponential 1.93 (1.92) 0.76 (0.73) 0.44 (0.48)
linear 1.92 (1.91) 0.76 (0.73) 0.44 (0.49)
square root 1.91 (1.90) 0.76 (0.73) 0.43 (0.50)
logarithmic 1.91 (1.90) 0.76 (0.73) 0.43 (0.49)
stress 1.89 (1.89) 0.75 (0.75) 0.45 (0.49)
regular 1.94 (1.94) 0.80 (0.79) 0.37 (0.45)

Table 4.1. LOCAL INCOHERENCE values of the calculated distances for the Norwegian data
(NOR) and the Netherlandic (NL) and Belgian (BEL) GTRP data using the algorithms de-
scribed in Section 4.3. The LOCAL INCOHERENCE of the regular Levenshtein algorithm is
given in the bottom row. The values between parentheses are based on the normalised dis-
tances, while the other values are based on the unnormalised distances. Lower values within
a column indicate better results.

74 Dialect pronunciation comparison and spoken word recognition

Correlation r

exponential 0.63 (0.64)
linear 0.63 (0.64)
square root 0.63 (0.64)
logarithmic 0.64 (0.64)
stress 0.66 (0.64)
regular 0.66 (0.66)

Table 4.2. Correlations of the calculated distances using the using the algorithms described
in Section 4.3 with the Norwegian perceptual data. The correlation with the dialect distances
calculated using the regular Levenshtein algorithm is given in the bottom row. The values
between parentheses are based on the normalised distances, while the other values are based
on the unnormalised distances.

Even though the algorithms introduced in Section 4.3 calculate dialect distances using
different approaches, the results are very similar. The Norwegian dialect distances cal-
culated with the adapted algorithms correlated highly with the regular Levenshtein dis-
tances (r > 0.97). This was also the case for Belgium (r > 0.97) and the Netherlands
(r > 0.95). Because of these high correlations, the dialectal maps based on the adapted
algorithms resemble the maps obtained using the regular Levenshtein distance as shown
in Chapter 2 and 3 a great deal.

To give an example of the high level of similarity between the results of the regular and
the adapted Levenshtein distance algorithms, Figure 4.2 shows the dialectal maps for
the Netherlandic results obtained using the regular Levenshtein algorithm (top) and the
logarithmic LEVEN-COHORT algorithm (bottom). The Belgian maps show comparable
similarity and are therefore not displayed. A detailed description of the three map types
can be found in Section 3.4.4.

4.5 Discussion

In this chapter we have developed a number of algorithms to calculate dialect distances
based on theories of spoken word recognition. Unfortunately these algorithms did not
show consistent results across all datasets. While improved results were found on the
GTRP datasets using the adapted algorithms, this was not the case for the Norwegian
dataset. We emphasise that our results do not reflect on the theories of word recognition
we employed, as word recognition and the recognition of signals of geographical or social
identity may be very different.

There are also some differences between the Norwegian dataset and the GTRP datasets
which are worth mentioning. First, the Norwegian dataset is very small (less than 1000
items in total) compared to the size of the GTRP datasets (both consist of more than
100,000 items). Due to the small size and the fact that dialect distances are not statis-
tically independent, it is almost impossible to find significant differences between the

4.5 Discussion 75

Figure 4.2. Dialect distances for regular Levenshtein method (top) and logarithmic LEVEN-
COHORT method (bottom). The maps on the left show the ten main clusters for both methods,
indicated by distinct symbols. Note that the shape of these symbols can only be compared
within a map, not between the top and bottom maps. The maps in the middle show robust
cluster borders (darker lines indicate more robust cluster borders) obtained by repeated clus-
tering using random small amounts of noise. The maps on the right show for each locality
a vector towards the region which is phonetically most similar. A more detailed explanation
about these map types can be found in Section 3.4.4.

76 Dialect pronunciation comparison and spoken word recognition

results of the different algorithms using the Norwegian perceptual data (Heeringa et al.,
2006). Second, there is a large difference between the average word length for the GTRP
data and the Norwegian data. The average word length in the GTRP data is 5.5 tokens,
while it is only 3.5 tokens for the Norwegian data. Because our algorithms employ a cost
function based on position and word length, this likely influences the results. For ex-
ample, consider the LEVEN-STRESS algorithm which weighs differences in the first three
tokens more heavily. Because in the Norwegian dataset the average word consists of only
slightly more than three tokens, the LEVEN-STRESS approach will almost be equal to the
regular Levenshtein algorithm.

The LEVEN-STRESS algorithm described in Section 4.3.2 uses an approximation of the
position and length of the stressed syllable. It would be interesting to evaluate the per-
formance of this algorithm when the exact position and length of the stressed syllable can
be used instead. Furthermore, it would be very appealing to compare the performance
of the LEVEN-STRESS algorithm to the performance of the LEVEN-COHORT algorithm on
a dataset where stress is predominantly placed on the final syllable. In that case the
LEVEN-STRESS algorithm weighs differences at the end of the words more strongly, while
the LEVEN-COHORT algorithm weighs differences at the start of the words more strongly.

Besides applying position-dependent weighting, another sensible approach could be to
weight edit operations based on the type of the sound segments involved. For instance,
there is evidence that consonants and vowels are not equally important in word recogni-
tion. Several studies found that correcting a non-word into an intelligible word is easier
to do when there is a vowel mismatch than a consonant mismatch (Cutler et al., 2000;
Marks et al., 2002; Van Ooijen, 1996), e.g. teeble → table versus teeble → feeble. It would be
interesting to adapt the Levenshtein distance algorithm to incorporate this assumption,
for instance by assigning lower costs to vowel-vowel substitutions than for consonant-
consonant substitutions.

Together with the adapted Levenshtein algorithms, we also introduced a normalisation
method for the new algorithms which enforces that similarity and distance are each oth-
ers’ inverses. In contrast to Heeringa et al. (2006) we do not find support for preferring
unnormalised distances over normalised distances. However this does not contradict
their results. In our algorithms a stronger bias towards longer words is present than in
their study, hence normalisation is more important.

Even though there are differences in performance on the GTRP datasets and the Norwe-
gian dataset, we found that the dialect distances calculated using the adapted algorithms
for a single dataset were highly similar to the results obtained with the regular Leven-
shtein algorithm. A possible cause for this similarity is the aggregate level of analysis;
we are looking at the language level instead of the word level. As a better indicator of the
performance of the adapted Levenshtein algorithms, it would be very useful to examine
the performance on the word level. For instance by evaluating the algorithms on the task
of recognising cognates (Kondrak and Sherif, 2006).

5 Conclusions and Future Prospects

In the previous chapters we have provided a thorough aggregate analysis of pronuncia-
tion in the most recent Dutch dialect data source, the Goeman-Taeldeman-Van Reenen-
Project data (GTRP). Besides comparing the dialectal situation it represents to the Reeks
Nederlands(ch)e Dialectatlassen (RND; see Chapter 2), we have attempted several (novel)
approaches to obtain dialect distances, consisting of using the regular Levenshtein dis-
tance (Chapter 2), Pair Hidden Markov Models (Chapter 3) and position-dependent Lev-
enshtein algorithms (Chapter 4).

The first method we applied was the Levenshtein distance, because previous studies
(Bolognesi and Heeringa, 2005; Heeringa, 2004; Kessler, 1995; Nerbonne et al., 1996; Ner-
bonne and Siedle, 2005) reported that it was a simple but effective method in dialect com-
parison. In accordance with these studies, we obtained sensitive dialectological results
using the Levenshtein distance. Unfortunately we also discovered large genuine tran-
scriptional differences between the Netherlandic GTRP data as compared to the Belgian
GTRP data.1 As mentioned earlier, it would be very useful to investigate the existence of
potential means to correct these transcriptional differences. For instance by reducing the
more detailed Netherlandic transcriptions to the less detailed Belgian transcriptions.

Our second method consisted of using Pair Hidden Markov Models to investigate the
usefulness of incorporating automatically obtained segment distances in calculating di-
alect distances. Although the generated segment distances corresponded to perceptual
(vowel) distances, the overall results were highly similar to the results obtained using the
Levenshtein distance.

Finally, we attempted to modify the Levenshtein distance such that it allowed for po-
sition-dependent weighting. This approach was inspired by psycholinguistic work on
spoken word recognition which states that the importance of a sound segment depends
on the position within a word. Although sensible results were obtained using this ap-
proach, again they strongly resembled the results obtained using the regular Levenshtein
distance.

To summarise, all three dialect comparison methods yielded sensible dialectal results,
lending support to the validity of the methods. Surprisingly, however, no significant
differences could be observed between the separate methods. As mentioned earlier, we
believe the sheer size of the GTRP (with over 100,000 items per country) is a likely cause
for this similarity. Even though the similarity of individual word pairs will be highly

1In tandem, we identified about 150 transcription errors in the data which were corrected by the Meertens
Instituut in a revised version.

78 Conclusions and Future Prospects

dependent on the specific algorithm, the aggregate result is obtained by averaging over
all word pairs and thus differences will be smoothed out to a large extent.

On the dialect level we cannot conclude that the novel dialect comparison methods are an
improvement over the regular Levenshtein distance. However, on the word level Mackay
and Kondrak (2005) showed that word pair similarity ratings obtained with the Pair Hid-
den Markov Model were superior to those obtained with the Levenshtein distance. Also
for the position-dependent Levenshtein algorithms it would be useful to assess the per-
formance on the word level.

We indicated earlier that there is evidence that consonants and vowels are not equally
important in word recognition (Cutler et al., 2000; Marks et al., 2002; Van Ooijen, 1996;
and see also Kondrak, 2003). Hence, it would be worth investigating if an adapted Lev-
enshtein algorithm which incorporates this assumption (e.g., by assigning lower costs
to vowel-vowel substitutions than for consonant-consonant substitutions) would offer
increased performance on either dialect or word level as compared to the regular Leven-
shtein algorithm.

All dialect comparison algorithms discussed previously operate by assigning a similarity
score to individual words and averaging them to obtain the dialect distance. When nor-
malising word pair similarity scores, this approach assumes that all word pair similarity
scores contribute equally to the dialect distance.2 But is it not strange that while we are
investigating more sensitive and novel phonologically inspired methods to measure seg-
ment distances in determining word similarity, we regard every word as equally impor-
tant in determining dialect similarity? Hence, an interesting avenue for further research
would be to incorporate the relative importance of every word in calculating dialect dis-
tances. For instance, by weighting words based on their frequency, like in Nerbonne and
Kleiweg (2007) who reported improved lexical comparison results using Goebl’s (1984)
inverse frequency weighting method which weights infrequent words more heavily than
frequent words.

2Note that when we do not normalise word pair similarity scores, longer words will on average have a
larger influence on dialect distances than shorter words.

Bibliography

Adank, P. (2003). Vowel Normalization - a perceptual-acoustic study of Dutch vowels. Ponsen
& Looijen, Wageningen.

Altman, G. and Carter, D. (1989). Lexical stress and lexical discriminability: Stressed
syllables are more informative, but why? Computer Speech and Language, 3:265–275.

Auer, P., Hinskens, F., and Kerswill, P. (2005). Dialect Change: Convergence and Divergence
in European Languages. Cambridge University Press.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique occur-
ring in the statistical analysis of probabilistic functions of Markov Chains. The Annals
of Mathematical Statistics, 41(1):164–171.

Blancquaert, E. and Peé, W., editors (1925 – 1982). Reeks Nederlans(ch)e Dialectatlassen. De
Sikkel, Antwerpen.

Bolognesi, R. and Heeringa, W. (2005). De invloed van dominante talen op het lexicon
en de fonologie van Sardische dialecten. Gramma/TTT: tijdschrift voor taalwetenschap,
9:45–84.

Bonnet, E. and Van de Peer, Y. (2002). zt: a software tool for simple and partial Mantel
tests. Journal of Statistical Software, 7(10):1–12.

Bühler, K. (1934). Sprachtheorie. Die Darstellungsfunktion der Sprache. Gustav Fischer, Jena.

Carter, P. (2002). Structured Variation in British English Liquids: The Role of Resonance. PhD
thesis, University of York.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika,
16:297–334.

Cutler, A., Dahan, D., and Van Donselaar, W. (1997). Prosody in the comprehension of
spoken language: A literature review. Language and Speech, 40(2):141–201.

Cutler, A., Sebastian-Galles, N., Soler-Vilageliu, O., and Van Ooijen, B. (2000). Constraints
of vowels and consonants on lexical selection: cross-linguistic comparisons. Memory &
Cognition, 28(5):746–55.

Daan, J. and Blok, D. P. (1969). Van Randstad tot Landrand; toelichting bij de kaart: Dialecten
en Naamkunde, volume XXXVII of Bijdragen en mededelingen der Dialectencommissie van de
Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam. Noord-Hollandsche
Uitgevers Maatschappij, Amsterdam.

80 Bibliography

De Schutter, G., Van den Berg, B., Goeman, T., and De Jong, T. (2005). Morfologische At-
las van de Nederlandse Dialecten (MAND) Deel 1. Amsterdam University Press, Meertens
Instituut - KNAW, Koninklijke Academie voor Nederlandse Taal- en Letterkunde, Am-
sterdam.

De Wulf, C., Goossens, J., and Taeldeman, J. (2005). Fonologische Atlas van de Neder-
landse Dialecten (FAND) Deel IV. Koninklijke Academie voor Nederlandse Taal- en
Letterkunde, Gent.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, United
Kingdom.

Eddy, S. (2004). What is a hidden Markov model? Nature Biotechnology, 22:1315–1316.

Filali, K. and Bilmes, J. (2005). A dynamic Bayesian framework to model context and
memory in edit distance learning: an application to pronunciation classification. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages
338–345, Michigan. ACL.

Goebl, H. (1984). Dialectometrische Studien. Anhand italoromanischer, rätoromanischer
und galloromaischer Sprachmaterialien aus AIS und ALF, volume 191–193 of Beihefte zur
Zeitschrift für romanische Philologie. Max Niemeyer Verlag, Tübingen.

Goeman, T. (1999). T-deletie in Nederlandse Dialecten. Kwantitatieve analyse van structurele,
ruimtelijke en temporele variatie. Holland Academic Graphics/Thesus, The Hague.

Goeman, T. and Taeldeman, J. (1996). Fonologie en morfologie van de Nederlandse di-
alecten. een nieuwe materiaalverzameling en twee nieuwe atlasprojecten. Taal en Tong-
val, 48:38–59.

Gooskens, C. (2005). Traveling time as a predictor of linguistic distance. Dialectologia et
Geolinguistica, 13:38–62.

Gooskens, C. and Heeringa, W. (2004). Perceptive evaluation of Levenshtein dialect dis-
tance measurements using Norwegian dialect data. Language Variation and Change,
16:189–207.

Goossens, J., Taeldeman, J., and Verleyen, G. (1998). Fonologische Atlas van de Nederlandse
Dialecten (FAND) Deel I. Koninklijke Academie voor Nederlandse Taal- en Letterkunde,
Gent.

Goossens, J., Taeldeman, J., and Verleyen, G. (2000). Fonologische Atlas van de Nederlandse
Dialecten (FAND) Deel II + III. Koninklijke Academie voor Nederlandse Taal- en Let-
terkunde, Gent.

Heeringa, W. (2004). Measuring Dialect Pronunciation Differences using Levenshtein Distance.
PhD thesis, Rijksuniversiteit Groningen.

Bibliography 81

Heeringa, W. (2001). De selectie en digitalisatie van dialecten en woorden uit de Reeks
Nederlandse Dialectatlassen. TABU, Bulletin voor Taalwetenschap, 31:61–103.

Heeringa, W. and Braun, A. (2003). The use of the Almeida-Braun System in the mea-
surement of Dutch dialect distances. Computers and the Humanities, 37(3):257–271.

Heeringa, W., Kleiweg, P., Gooskens, C., and Nerbonne, J. (2006). Evaluation of string dis-
tance algorithms for dialectology. In Nerbonne, J. and Hinrichs, E., editors, Linguistic
Distances, pages 51–62, Shroudsburg, PA. ACL.

Hinskens, F. and Van Oostendorp, M. (2006). De palatalisering en velarisering van
coronale nasaal-plosief clusters in GTR. Talige, dialectgeografische en onderzoekersef-
fecten. Taal en Tongval, 58:103–122.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice
Hall, New Jersey.

Jusczyk, P. W. and Luce, P. A. (2002). Speech perception and spoken word recognition:
Past and present. Ear and Hearing, 23(1):2–40.

Kerswill, P. (2006). Migration and language. In Mattheier, K., Ammon, U., and Trud-
gill, P., editors, Sociolinguistics/Soziolinguistik. An international handbook of the science of
language and society, 2nd edition, volume 3, Berlin. De Gruyter.

Kessler, B. (1995). Computational dialectology in Irish Gaelic. In Proceedings of the Seventh
Conference of the European Chapter of the Association for Computational Linguistics, pages
60–66, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Kondrak, G. (2003). Phonetic Alignment and Similarity. Computers and the Humanities,
37(3):273–291.

Kondrak, G. and Sherif, T. (2006). Evaluation of several phonetic similarity algorithms
on the task of cognate identification. Proceedings of the Workshop on Linguistic Distances,
pages 43–50.

Labov, W. (2001). Principles of Linguistic Change. Vol.2: Social Factors. Blackwell, Malden,
Mass.

Lobanov, B. M. (1971). Classification of Russian vowels spoken by different speakers.
Journal of the Acoustical Society of America, 49:606–608.

Luce, P. A. and McLennan, C. T. (2005). Spoken word recognition: The challenge of
variation. In Pisoni, D. and Remez, R., editors, The Handbook of Speech Perception, pages
591–609, Oxford. Blackwell Publishing.

Mackay, W. (2004). Word Similarity using Pair Hidden Markov Models. Master’s thesis,
University of Alberta.

82 Bibliography

Mackay, W. and Kondrak, G. (2005). Computing word similarity and identifying cognates
with Pair Hidden Markov Models. In Proceedings of the 9th Conference on Computational
Natural Language Learning (CoNLL), pages 40–47, Morristown, NJ, USA. Association for
Computational Linguistics.

Marks, E. A., Moates, D. ., Bond, Z. S., and Stockmal, V. (2002). Word reconstruction and
consonant features in English and Spanish. Linguistics, 40(2):421–438.

Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cog-
nition, 25(1-2):71–102.

Marslen-Wilson, W. D. and Welsh, A. (1978). Processing interactions and lexical access
during word recognition in continuous speech. Cognitive Psychology, 10:29–63.

Marslen-Wilson, W. D. and Zwitserlood, P. (1989). Accessing spoken words: The impor-
tance of word onsets. Journal of Experimental Psychology. Human Perception and Perfor-
mance, 15(3):576–585.

Nerbonne, J., Heeringa, W., Van den Hout, E., Van der Kooi, P., Otten, S., and Van de Vis,
W. (1996). Phonetic distance between Dutch dialects. In Durieux, G., Daelemans, W.,
and Gillis, S., editors, CLIN VI: Proc. from the Sixth CLIN Meeting, pages 185–202. Center
for Dutch Language and Speech, University of Antwerpen (UIA), Antwerpen.

Nerbonne, J. and Kleiweg, P. (2007). Toward a dialectological yardstick. Accepted for
publication in Journal of Quantitative Linguistics.

Nerbonne, J. and Siedle, C. (2005). Dialektklassifikation auf der Grundlage aggregierter
Ausspracheunterschiede. Zeitschrift für Dialektologie und Linguistik, 72:129–147.

Nunnally, J. C. (1978). Psychometric Theory. McGraw-Hill, New York.

Pols, L. C. W., Tromp, H. R. C., and Plomp, R. (1973). Frequency analysis of Dutch vowels
from 50 male speakers. The Journal of the Acoustical Society of America, 43:1093–1101.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rabiner, L. R. and Juang, B. (1986). An introduction to Hidden Markov Models. ASSP
Magazine, IEEE, 3(1):4–16.

Seguy, J. (1973). La dialectometrie dans l’Atlas linguistique de la Gascogne. Revue de
linguistique romane, 37:1–24.

Tabachnik, B. and Fidell, L. (2001). Using Multivariate Statistics. Allyn & Bacon: 4th
edition, Boston.

Taeldeman, J. and Verleyen, G. (1999). De FAND: een kind van zijn tijd. Taal en Tongval,
51:217–240.

Bibliography 83

Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. The Journal
of the Acoustical Society of America, 88:97–100.

Van den Berg, B. L. (2003). Phonology & Morphology of Dutch & Frisian Dialects in 1.1 million
transcriptions. Goeman-Taeldeman-Van Reenen project 1980-1995, Meertens Instituut
Electronic Publications in Linguistics 3. Meertens Instituut (CD-ROM), Amsterdam.

Van Nierop, D. J. P. J., Pols, L. C. W., and Plomp, R. (1973). Frequency analysis of Dutch
vowels from 25 female speakers. Acoustica, 29:110–118.

Van Ooijen, B. (1996). Vowel mutability and lexical selection in English: evidence from a
word reconstruction task. Memory & Cognition, 24(5):573–83.

Van Oostendorp, M. (2007). Kenmerkeconomie in de gtrp-database. To appear in Taal en
Tongval.

Walley, A. (1988). Spoken word recognition by young children and adults. Cognitive
Development, 3:137–165.

Wieling, M., Heeringa, W., and Nerbonne, J. (2007a). An aggregate analysis of pronunci-
ation in the Goeman-Taeldeman-Van Reenen-Project data. Taal en Tongval, 59(1).

Wieling, M., Leinonen, T., and Nerbonne, J. (2007b). Inducing sound segment differences
using Pair Hidden Markov Models. In Nerbonne, J., Ellison, T. M., and Kondrak, G.,
editors, Computing and Historical Phonology: 9th ACL Special Interest Group for Morphol-
ogy and Phonology, pages 48–56.

Wieling, M. and Nerbonne, J. (2007). Dialect pronunciation comparison and spoken word
recognition. Submitted to the Workshop on Computational Phonology, Borovets, Bul-
garia, 6/2007.

Wolfram, W. and Schilling-Estes, N. (2003). Dialectology and linguistic diffusion. In
Joseph, B. D. and Janda, R. D., editors, The Handbook of Historical Linguistics, pages 713–
735. Blackwell, Malden, Massachusetts.

84 Bibliography

List of Figures

1.1 Locations of dialectal groups in map of Daan and Blok (1969) 2

2.1 Geographic distribution of GTRP localities 10
2.2 Average Levenshtein distance among GTRP varieties 18
2.3 Keyboard IPA symbols . 19
2.4 Relative locations of Poppel (BEL) and Goirle (NL) 20
2.5 Average Levenshtein distance among GTRP varieties (NL vs. BEL) 22
2.6 MDS map of varieties in the Netherlands 24
2.7 MDS map of varieties in Belgium . 25
2.8 Relative convergence and divergence among dialects based on residues . 30
2.9 First component of Principal component analysis applied to residues . . . 32

3.1 Pair Hidden Markov Model . 38
3.2 Random Pair Hidden Markov Model . 45
3.3 Conversion of frequency to Bark scale . 55
3.4 Correlation between PairHMM scores and acoustic distances 56
3.5 Netherlandic dialect distances for Levenshtein and PairHMM method . . 60
3.6 Belgian dialect distances for Levenshtein and PairHMM method 61
3.7 Vector map for PairHMM and LLW approach (NL) 62
3.8 Vector map for PairHMM and LLW approach (BEL) 63

4.1 Cost functions for adapted Levenshtein algorithms 69
4.2 Dialect distances for Levenshtein and leven-cohort method 75

86 List of Figures

List of Tables

1.1 Dialectal regions in map of Daan and Blok (1969) 3

2.1 List of all words in the GTRP subset . 11
2.2 Overview of unused phonetic symbols . 17
2.3 Phonetic transcriptions of Goirle (NL) and Poppel (BEL) 20

3.1 Forward algorithm for Hidden Markov Models 40
3.2 Forward algorithm for Pair Hidden Markov Models 41
3.3 Backward algorithm for Hidden Markov Models 42
3.4 Backward algorithm for Pair Hidden Markov Models 42
3.5 Viterbi algorithm for Hidden Markov Models 43
3.6 Viterbi algorithm for Pair Hidden Markov Models 44

4.1 Local incoherence values for adapted algorithms 73
4.2 Correlation of leven-cohort results and Norwegian perceptual data 74

	Introduction
	Dialect pronunciation comparison using the Levenshtein distance
	Introduction
	Material
	Measuring linguistic distances
	Results
	Discussion

	Dialect pronunciation comparison using Pair Hidden Markov Models
	Introduction
	Material
	The Pair Hidden Markov Model
	Results
	Discussion

	Dialect pronunciation comparison and spoken word recognition
	Introduction
	Material
	Adapted Levenshtein distance algorithms
	Results
	Discussion

	Conclusions and Future Prospects
	List of Figures
	List of Tables

