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Abstract

The present studyses electromagnetiarticulographyby which the position of tongue and lips during speech
measuregfor the study oflialect variationBy using generalized additive modeling to analgreearticulatory
trajectorieswe are able to reliably detemgigregatgroup differences, while simultaneously taking into account
the individual \ariation of dozens of speake@ur results show that twoutchdialects show clear differences in
their articulatory settings, withenerallya moreanteriortongue position in the dialect from Ubbergen in the
southern half of the Netherlands than in the dialect of Ter Apel indhteernhalf of the Netherlarsl A
comparison with formarbased acoustic measurements further revealattietilographyis able to reveal
interesting structurarticulatorydifferencesbetweerdialectswhich are not visible when only focusiran the
acoustic signal.
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Introduction
At presentmoststudies in dialectology andociolinguisticinvestigating pronunciatiomariation
focuson the acoustiproperties ofzowels(e.g.,Clopper &Pisoni, 2004abov, 1980; Leinonen,
201Q Recasens & Espinosa, 20@%ank et al., 2007Van der Harset al.,2014). Since theseminal
study of Peterson & Barney (1958)rmant measurements have beenmiethod of choice for
measuing vowel quality While the firstand secondbrmant aregenerally assumed to modedight
and frontness of the tongue botlyis relationship igar from perfect(Rosner and Pickerind.994).
For example, an increase in F2 can be caused by a more anterior tongue posititso, by a
decrease in lip rounding or tongue body shape (Lindblom & Sundberg, 1971; Harrington et al., 2011).

Labovet al.(1972)have spearheadedetformantbasedapproach in sociolinguissdy
studying Englishformantbasedvowel variationfor a laige number of speakers from various areas in
the United States of Americ8ince then many other studies assessing dialect variation have used
formantbased method§&or exampleAdank et al. (2007) investigad regional Dutch dialect
variation andboth Clopper andPaolillo (2006)and Labowet al.(2005)studied American English
regionalvariation.While formantbased measures provide a convenient quantification of the acoustic
signal,the approacks not without its problemgzirst, since the shape of the vocal tract influences the
formant frequencies (e.g., women generally have higher formant frequencies than men), some kind of
normalization is required (see Adank et al., 2004 for an overview of various approaches) andjchoosin
one method over another introduces a degree of sulifgdtito the analysig-urthermore, automatic
formantdetection ismperfect and requiramanual correction in abod7-25% ofthe cases (Adank et
al., 2004; Eklund & Traunmidiller, 199¥an der Harset al., 2013 Especially when using multiple
formant measurement points per vowel (whihrguably better than using only the rpigint of the
vowel; seeVan der Harst et al., 2014), this becomes very-amesumingFor this reason whole
spectrum métods (obtained by barghss filtering theompleteacoustic signal) have also been used
in language variation researdh.her dissertatigrieinonen (2010) studied Swedish dialect variation
based on the automatic whedpectrum analysis @&wedishvowel gronunciations. A drawback of this
type of analysis, however, is that itighly sensitive to the amount of noise in the acoustic recordings
(Leinonen, 2010, p. 152Furthermoreboth formamtbased and wholspectrurdbased methods are
not suitablefor investigaing variation in the pronunciation of consonants.

Anotherapproacho investigaing pronunciation variation ihe useof transcriptiongo
describe the pronunciation of a spealBrusing transcriptionsarepresentative encoding of the
impressionof the acoustic signal is obtained which can be used tosgssesinciatiordifferences
between groupef speakers Even t hough A[t]ranscription, i s a
p. 273, transcriptions ar&equently used idialectometrywhereaggregate aalysesbased on a large



set of linguistic itemareinstrumental for obtainingn objective view of dialectal variation and its
social, geographical and lexical determinants (see Wieling and Nerbonne, 2015 for an ovArview).
clearadvantage of using transcriptions is that they are excellently suited for a quantitative analysis
(see, e.g., Wieling et al., 201 drawback of using transcriptions is that the speech signal is
segmented ito discrete units, with means thdtne-grained subphonemic (phonetic) differences,
such aco-articulation effectsarefrequentlyignored(as these are less reliably transcribed; Goeman,
1999, p.35)In addition, reduced word forms may be reconstructed automatically by human listeners,
effectively nterpolating sounds which are not present in the acoustic signal (Kemps et al., 2004), and
this may affect transcription quality as welf course, for a careful phonetic analysis, a narrow
transcription is necessary. For example, Sebregts (2015) distiegumany different pronunciations
of /r/ by several hundreDutch speakerghrough a careful phonetic analysis
Instead ofocusing ortranscriptions based on theoustic signait is also possible to
examinethe articulatory gesturasiderlying speecfi.e. the movement of lips and tongue, etc.
involved in itsproduction; Browman and Goldstein, 1992). Given that ease of articulatiopastant
for linguistic change (Sweet, 188&e also Sebregts, 2015, Ch. 7,3lds also makessase from a
diachronic perspectivé&urthermore, focusing on the articulatory gestures will prorideedetails
about the pronunciatioriean can be identified on the basis of the (discrete) transcriptimig.a
limited number of studies have investigadtdialectand sociolinguistizariation by focusing on the
movement of thepeecharticulators Most of these studiehiaveemployed either electropalatography
(EPG)or ultrasoundongue imagingWith EPG the contact between the tongue and the hard palate
monitoredwith a custormmadespeakerspecificartificial palatecontainingseveral electrode€orneau
(2000)applied this method tcompare the palatalization gestures in the production of /t/ and /d/
betweerBelgium French an@uébec FrenchandRecasens and Espinosa (2003&dit to investigate
differences in the pronunciation of fricatives and affricates in two variants of Catétde.EPGonly
contains information about t he t, otragpundobiggie posi ti on
imaging is able tdrackmost of the tongusurface as it movesuringthe whole utterancdhe
sociolinguistic relevance of tracking the shape of the tongue was clearly shown by letakon
(2011), whademonstratethat /r/ pronunciation in Scottish Higlh was socially stratifiedvith
middle-class speakers generally using bunched articulatignite working-class speakers more
frequently used tongut#p raised variantsConsequentiylawson et al. (2011p.257) suggest that
farticul at esseytialdoanpoaentdnrae integrated account of sodallyr at i fi ed var i
There are amedrawbacks associated with the two articulativgervationaimethods
described above. The clear drawbacEBfGis that it is very costly, as a custanade artificial palate
needs to be constructed for each participant. In addEB@Gdoes not yield information about the
tongue position when it is not touching the paldihile ultrasoundongue imagingloesprovidethis
information, it is noalwayscomplete aiterposedublingualair pocketsareintroducedwhen the
tongue is raisedr extendedandshadowing fronthe mandible and hyoid bonegy cause the tongue
tip and the tongue root to become invisible (Tiap2013). Furthermore, analysisresultingtongue
shaps can bampressionisticastracking a singldlesh pointon the tongue is not possit{leawson et
al., 2011; but see Davidson, B)OMoreover unless otherwise corrected (cf. Whalen et al. 2008)
imaged tongue shape is relative to the position of the probe and jaw, not to palatal hard structure, and
thus evaluation of tongue height across vowels is problematic.
Electromagnetic articulography (EMAdoole and Nguyen, 199®erkell et al., 1992Schdnle
et al, 1987 is apointtracking approachnd therefore distinct from the two methods abé&weEMA
device tracks as a function of time small sensors attached with dental adhesive to varigaéniigesh
associated with the speech articulat®alio-frequency transmitters induce voltages in the sensor
coils positioned within the field of the device, and sensor position and orientation are subsequently
reconstructed by comparing these voltages to known reference.\fitlegood spatial (< 0.5 mm)
and temporal (100 Hz) tracking resolutjdinis well suited for quantitative analydi®cause the
resulting trajectories are amenable to established statistical apprdathearse EMA has
drawbacks as welBecause the sensors are monitored through vateschmentis possible only in
the anterior third of the vocal tra¢lthough speakers readily adapt to speech with attached sensors
they nonetheless constitute a potential perturbation of normal spedah,@articular to minimize
such perturbation the tongue tip is tracked indirectly, through sensor placement behind the true apex.
Tongue sensor placement introduces variability, as the relative placement of each sensor will not be



the same for each spea given individual differences in speaker morpholofygd while current

EMA systems support spatial tracking in 3D and can thus in principle track parasagittal movement, in
practice sensors are typically placed only midsagittalgum, all approachesabe their own

advantages and disadvantadeghis study we opted to u&MA in orderto track the position of
threesensorattachednidsagittalyto the tongue.

Until recently,EMA dialectalstudies have been conducted with a relatively small number of
speakes (e.g.,Recasens and Espinosa, 200@eespeakes). Becauseéhere is much speakeelated
variation in articulatory trajectories (Yurma et al., 2012)it is fortunate thatlue to technical
advancementimicluding a larger number of participamsbecomingncreasinglycommon(eg.,

Yunusova et al., 2012: 19 speakekoos et al. 2013: 25 speakerdn our study, we continue this
development by including4 speakers. To our knowledge, this is the largest sample size used in an
articulography stdy to date.

In this study, we focus on Dutgronunciation variatiofrom anaggregatarticulatory
perspectiveOnly very few published studidsve investigated variation in the Dutch language from
an articulatory perspectiv8cotbie and Sebreg({®010)focused onnvestigatinga singlefeature
namelyallophonicDutch variation in th@ronunciation of /r/ using ultrasound recordingswever
due to the low number of speakefig€) and the ultrasound approach, the dgsion of the results
remaned ratheimpressionisticOoijevaar (2015) investigates variation in Dutch liquids using
ultrasoundongue imagingwhile Strycharczuk & Sebreg(@015) use the same technique to
investigate /Hallophony. Another study (Chan et al., 1995) collecteghigograph recordings for a
total of nine Dutch speakers, but did not quantify the results as it was part of a large data collection
project (EUROM.1). Finally, one clinical study has used EMA to investigate Dutch speaking children
with developmental apraxiof speech (Nijland et al., 2004) in a sample of three children (plus three
healthycontrols)*

Of course, mangtudies have investigat@donunciatiorvariation in Dutch dialectgrom
variousotherperspectived-or exampleas mentioned abovédanket al. (2007) investigated the
acoustic properties of vowels in several regional varieties of Dutch spoken in the Netherlands and
Flanders. They observed clear regional variation in the forlres#d measuremenfmother type of
studyfocusing on Dutchidlectsis exemplified byGoeman (1999whoinvestigatedh specific
feature in Dutch dialects, namely the loss of [t] in final word pronunciation-fi€etion). He
identified severafgeographical constrainedjoups within the Netherlands exhibitiagecifict-
deletion patterngzadlowing Nerbonne et al. (1996Heeringa(2004)took an aggregate dialectometric
perspective anduantified pronunciation differenséoy focusing on the transcriptions and comparing
those using the edit distance measureth@rbasis of comparing hundreds of wdnéswveen hundreds
of locationsin the Dutchspeaking language ard#& was able to identify the major dialect areas of the
Netherlands. In his dissertatifRigure 9.7, p. 234 he identified the four main dialectess as the
Frisian dialect area (in the northwest of the Netherlands), the Limburg dialect area (in the southeast of
the Netherlands), the Le®axon dialect area (in the northeast of the Netherjaarabthe @ntral
Dutch dialect areaimilarly, Wielinget al. (20072011 identifiedrelativelycomparable dialect areas
using a different dataset of Dutch dial&enscriptiors.

As articulatory datdin the sense of lingual instrumentatiaamnotreadilyavailable for Dutch
dialects, we collected diale@nd standard Dutch) pronunciaticatswo different sitesTo ensure the
dialects were not too similar, vellected our data at one site in than-6axon dialect are@e. the
village of Ter Apel) andat another site ithe Central Dutch dialect aréize. the village ofUbbergen)

Given that the goal of this study is to assess articulétlimjec) pronunciatiordifferences
from an aggregate perspective include many participants and itemsabdition, wepropose a

1Additionally, there is one conference proceedings papegstigating Dutch pronunciation variation from an
aggregate articulatonyerspectivgWieling et al, 2015) However, he present studg an extended version of

that study, and offera more detailed report of timeethods andesultspresented by Wiglig et al. (2015). In

addition, this study does not only focusdialect variation, but also on variation in standard Dulitbte that

the results presented here are slightly different from those discussed by Wieling et al. (2015), as in the present
studya subset of the data (i.e. only young speakers) was analyzed using an improved version of the generalized
additive modeling software. Furthermore, in this study we also controlled for thgpeech resting position of

the sensors.



flexible statistical approach, generalized additive modeling (GAM; Hastie and Tibshirani, 1990;
Wood, 2006¥or analying articulography data. The advantage of ushig approach (explained in
more detail below)s that it is able to model tm®nlineartrajectoriesof the tongue sensors in multiple
dimensions over timevhile alsotaking into account individual variatioAs generalized additive
modeling is aegression approach, itégcellently suited to assess the influencéhefpredictos of
interest (in our case the contrast between the two gromgjearticulatorytrajectories

Given that the generalized additive modeling technique is relatively new, weralsde a
morefrequently used approach to analyze this type of data, galinelar discriminant analysis.
Furthermore, we will contrast the articulatory results to those on the basis of traditional formant
analysis. This will allow us tmvestigatethe potentialdifferences between the two perspectives.
While wecertainlyexpect articulatory differences between the two groups of spedkerto their
different dialect background, we do not have a clear hypothesis about the specific characteristics of
these differencesn that sense, our study is exploratdrythe following,we will discuss the methods
and results obtained in this study.

Articulatory data collection

Our study was conductedn-sitein 2013at two high schools in the Netherland$e first school

i RSG T e was lbgated irdTer Apel (in the northern haltled Netherlandd.e. in the Low

Saxon dialect ar¢awhile the second schoBIHAV O Not r e Dawaelocataién Anges o
Ubbergen (in the southern half of the Netherlands, at a distance of about 150 kilometers from Ter
Apel, i.e. in the Central Dutch diadt areq Figure 1 shows the location bbthdata collection sites.
The approximate location of the dialect bordistinguishing the Low Saxon Dialect area from the
Central Dutch dialect area is indicated by a red dasheddireach school dataerecollectedonsite
during a single week by twesearchers of the University of Tibingen (MW and DA in Ter Apel and
MW and FT in Ubbergerat both sitesMW attachedll sensork In Ter Apel, 3 speakers
participated, but the data nfo speakersvas excludd as ittontainedracking inconsistencies due to

a malfunction of the reference sendeurthemore, we excluded the data of sidult participants

(born between 1939 and 1967) in Ter Apel, as the remaining participants in both locations were
childrenborn between 1994 and 2000 (no adults participated in Ubbei@éthe remainind.5
speakersix were female andine malewith an average year of birth of 198Gaverage age 16;8h
Ubbergen25 high school studentsarticipated, buthe data okix speakers was excludgdive

speakers did not speak the regional dialect, and the reference sensor malfunctionespieaker)

The remaining 19 participants7 male two femal€) were born between 1994 and 2G@ith an

average year of birth of 1995(average age 16;6Before participating, participants weanéormed
about the nature of the experiment aaquired to sign the informed consent fdjifrparticipants were
under 18, their parents had to sign an informed consent form askeall).data diection session
lasted a total of 50 minutes for which the participants viiremcially compensated.

TheEMA datawerecollected with a portabl&6-channel devicWAVE, Northern Digital
Inc.) ata sampling rate of 100 Handautomatically synchronizkto the audio signdfecorded at
22.05 kHz usin@n Oktava MK012 microphond)y the controlling software (WaveFront, Northern
Digital Inc.). This software also corrected for head movement using a 6DOF reference sensor attached
toeactpar t i ci p a.Thednicroghane aniViA alel/ice were connected to the corling
laptop via a Roland Quadaptue USB Audio interface.

We attached three sensors to the midline of
dental glue. One sear(T3) was positioned as far backward as possible without causing discomfort
for the speaker. Another sengddl) was positioned about 0.5 cm behind the tongue tip. The
remaining tongusensoT2) was positionea@pproximatelymidway between the other twsensors.

The average absolute distance between the front and the back sensor was abqurzéidithmot
differ significantlybetween the two groupAttaching all sensors took about 20 minutes. Whenever

2 As the gender distriliion across the two groupsasurbalanced, we ramaadditionalanalysis focusing ol

on the male speakers. As this analysigealed the same pattern which was observed for the whole group, we
included dlyoung speakers in the analysis reported inghjser.

% Besideghe three tongue sensors, alsoglued three sensors to the lips and attached two sensors to the jaw.
For the purpose of this study, however, we only focus on data from the three tongue sensors.



sensors came off during the course of the experiment, they were reattached at their original location.
To align the positional data to axes comparable between speakers, a separate biteplate recording
(containing 3 sensors, see Fig@ewvas used during processing to rotate the data of each speaker
relative to the occlusal plane (Hoole & Zierdt, 2010; Yunusova et al., 2009) and to translate to a
common ori gi n o nFigurk 2note ihathésprigia does nét imfluénceithe

normalized sensor positions, due to our preprocessing steps outlined below).

(P

Figure 1. Location of the two data collection sit€BA: Ter Apel, UB: Ubbergenin the NetherlandsThe red dashelihe
shows the approximate dialect border between the Low Saxon dialect area and the Central Dutch dialect area.
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Figure2.Schemati c representation of the biteplate. Circles n
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Figure 3. Visualization using VisArtico (Ouni, 2012) of the type of data collected. Theighp inset shows a frontal view

of estimatedip postureon the basis of two sens@kaced midsagittaly at the vermillion bord&hetop-left part shows a
schematic representation amidsagittalview of thetwo lip sensorgin green)and thethreetongue sensoi@n red) An
approximation ofhe palate of the speakisralso showiin black Directly below this visualization atbe verticaltrajectories

in the inferiorsuperiordimension for the three tongue senstrsng the pronunciation of the standard Dutch CVC sequence
taat, [tat]. Below those trajectoriethe segmentation artle spectral plot is shown.

The experimenivas divided into two parts$n the first part, participants had to name 70
images(e.g., the image of a balb) their own dialec{repeated twice, in random ordgpyesented on a
computer screeo familiarize theparticipans with the imageandto make sure they knew what
each image depictethey were asked to name each image in their local dialect once before the sensors
were attached. In case tharticipantfailed to use the correct word, he or she e@sected by the
experimenterTable 1 showshie 70 words with the transcriptions of the approximate pronunciations in
the two dialectsT he five words which have the same approximate pronunciation in both dadects
marked in bold face in the tablas these are used in a validation analysis, exgaébelow) In the
second part, participgsmhad to read 27 CVC sequences out l@idt(k,p/, V: /a,i,o/, e.g., [tap]h
standard Dutcl{this was emphasized during the explanation of thig.darportantly, students are
familiar with the standarButch language, as it is the language in which they are taught at.school
Again, each item was pronounced twice and in randomized @géncluding both standard Dutch
pronunciations and dialect words, we are able to evaluate if common tongue movejeetaries
can be observed in both types of speéchisual impression of thdataobtained can be seen in
Figure3.



Word Ter Apel Ubbergen Word Ter Apel Ubbergen
bal ba'El bo | molen mgln mRBE|
ballen baEl n b6 | D muggen mi g /& MAHD
been bAIn b e Hn negen negn n éHel
beer bdE r b ogen og &£ 0 HHD

bel bUE | bul 00g o Ex o E-
bellen bUE| n bulp oor AEr (07

bier bi Er biH paal pdE| pOE|
biet bAit bi Ht paarden pder d n pdddp
bijl bi EI bil palen pdEl n po&' Bl
bijlen bi El n bilp peren PGET n paB D
blauw bl aEu blAu riem rAm Ui Hm
bloemkool blAumkoul bl umk o '} roos rous o Es
bogen bougk b ooH- schaap SXAEp Q SEOEp
boor bdE r bd'B schaar SXCGE r sl

boot bout "Q b o Ht speen s peHn speHn
bril brd bU I speer SpuE r spua
brillen brdn bu I step stubD stup

deuk d B'Ek di Ek ster StAD sty U
deur dAET d T0H stoel stAulp stul
dolfijn dd® vi Hn dOFUEnN stoelen stAuln stulb
fruit friy t "Q fo Kt taarten tdEt n t Dto
geit xuit GUEt tol to to

geld XUEI t "Q cult tollen tan tao
harp haEp ho 0 p tor tQp tOu
kameel kbome El kbome El treinen trAinn tL D
kamelen kome El n kometH| uil u il y El

kar k abEr ko 0 uilen uln y bil

kat kat kb t vingers VCsBrs fb &
kersen ka'Ezn ko sp violen vi o El n f i HI
kruk krbg kO & vlaggen viaggk fl6-0pb
krukken kr1 gk kO kb vliegtuigen VIA xt yE¢f |l iHpt y '}
lamp | a’Emp ™ Q 16 mp vogels vo'Yis f ol
leeuw | e Hu | e Hu wiel Gi HI Gi HI
lepel lebol | ebHp wielen G HIl n Gilp
linialen liNildEl n lini6 HI o | zagen Z0Eqg /£ Z6'H D

Table 1. List of all 70words pronounced in the speaked | o c a | di abpproxtmate The expected
pronunciations are indicated for each location. The five words which have the same expected pronunciation in
both locations are marked in bold face.

Articulatory data preprocessing

After collecting all articulatoy data, the data for each speaker were manually segmented (acoustically)
at the phone level. Tongue movement data which were not associated with a pronunciation of one of
the words included in our study weradondassnear ded.
normalized between @¢ousticstart of the word) and Ja¢ousticend of the word) for each speaker.

As the tongue sensors were attached to the midline of the tongue, we only included the position in the
inferior-superior direction (i.e. tongue height) and the antgrasterior direction (i.e. posterior

position of theongue) in our analysis. To enable an appropriate comparison between speakers,
normalized the positions of each sensor separately per speaker. In order to abstract away from
differences in where the sensors were placed on the tonguetereninedhe psition relative to the
nonspeech resting position of each sensor. Consequently, negative values reppestimadbelow

or in front of the norspeech resting position of that sensor (in that direction), whereas positive values
represented positiondave and behind the nepeech resting position. Higher values thus indicated
more superior and posterior positions with respect to thespeach resting position, whereas lower
values indicated the opposite. The fspeech resting position (i.e. the mauposition of the tongue)



was recorded during a separate session of aboaeconds in which the participants were asked to
refrain from speakingr swallowing As the amount of tongue movement may vary per speaker, we
normalized the positions by diviy by the total range of movement in each direction. In this way, the
difference between the most anterior (or inferior) position and the most posterior (or superior) position
was always exactly 1 for each subject. The sign of the difference still ieditte position with

respect to the nespeech resting position. For example, for one speaker the normadigedior

positionsof T1 could range betweef.4 and 0.6, while for another it could range fr@n8 to 0.2

Formant extraction

We automatically extracted the first (F1) and second formant (F2) frequencies of the acoustic
recording of the vowels in our dataset usingfthdformantsfunction of thephonToolsR package

(Barreda, 2015). This function extracts formants on the batlie dbrmulas provided in Snell (1993).

We extracted the formants feach word separatelising a time step of 5 ms (i.e. at 200 Hz). Per time
point for which we had articulatory data, we averaged the corresponding formant measurement points
(generally abuttwo time points, as the articulatory data was obtained at 100 Hz and the formant data
at 200 Hz) As a rough correction of the automatically extracted formants frequenciesseaeded

F1 measurements outside of the rangei20000 Hz, and did the s& for F2 measurements outside

of the range 500 3000 Hz Afterthisstep we nor mal i zed the formant fre
(1971) ztransformation, as this normalization method was reported by Adank et al.,(20@4lso
investigated Dutch dat&g be an adequate normalization procedure retaining sociolinguistic variation.
As automatic formant measurements may be incorrect, we also obtained a set of formant
measurement®f a subset of the data (for each speaker: 27 CVC sequences and 20 raatrtdgd

dialect wordswhich were manually corrected (after being automatically generated in PRAAT)

Data analysis generalized additive modeling

Sincethe articulatory trajectories of the individual tongue sensors are clearly nonlinear, we use
generalied additive modeling to analyze the d@tastie & Tibshirani, 1990; Wood, 200¢§ee

Baayen, 2013 for a netechnical introductiopn Generalized additive modeling is a flexible regression
approach which not onlsupportdinear relationships between thepgadent variable and the
independent variables, but alsonlineardependencieand interactions

Generalized additive modeling has been used in articulography before (Tomaschek et al.,
2013, 2014; Wieling et al., 2015). Furthermore, the method has pphledato language variation
research (Wieling et al., 2011 and Wieling et al., 2014), and to model nonlinear patterns of brain
signalsacross timge.g., Tremblay & Baayen, 2010; Meulman et al., 2@if) likewise fogaze data
(Van Rij et al., 2016a).

In this case our dependent variable is the normalized positieaafsensor, which we model
as asmooth(i.e. nonlinearfunction (SF)over normalized timeThe smooth function is represented
using a thin plate regression spliiw¢ood, 2003)which modelghe nonlinearityas a combination of
several low level functionsuch as a logarithmic function, a linear function, a quadratic function,
etc.)® There are other types of splines possible, suetcabic regression spline (consisting of a series
of third degree polynomials), bathin plate regression splinedisetter performance ansl
computationally efficient (Wood, 2003)o prevent overfittingf the dateby theSF, the amount of
nortlinearity (i.e. the wigglynegsf a spline is penalized. Furthermogeneralized crosgalidation is
usedto determineappropriatgparametersf the thin plate regression splidaring the modefitting
procesgWood, 2006Y.

* Importantly, the resulting patterns were relatively similar when another normalization scheme was used

instead. This alternative normalization scheme consisted of setting the most anterior (inferior) position of the T1
tongue sensor to 0 and the most pastgsuperior) position of the T3 tongue sensor to 1. Consequently, this
normalization scheme can be seen as normalizing the inside of the mouth of each speaker between 0 and 1 in
both directions. While the nespeech resting position was not involvedktiis normalization, we included the
non-speech resting position as a control predictor in the models which were fit using this normalization scheme.

® Intuitively, a spline may be viewed as a flexible band which followsyéeerapattern of the points.

® with generalized cross validation the data is repeatedly fit on a random subset of the data and then validated on
the remaining part of the data.



As there isclearlymuch variation in tongue movement asisted withspeakerandwords
any adequate analysis will need to take this into account. Fortunatedgrtbelized additive
modelingprocedure implemented in the R packaggev(version 1.812) allows for the inclusion of
factorsmoothdo representull random effectsThesefactor smoothgfor an example, see Figudg
are anonlinearalternative to random intercepts and random slopes in a rafketts regression
model. Just as random intercepts and slopes (which are required in a model where multiple
observations are present ppeakerand/or words; Baayen et al., 2008);tor smothsare essential
for taking the structural variability associated with individspkeakersind words into account and
therebypreventanti-conservativei.e. too low)p-values.

Asin a common(Gaussianjegression model, the residuals (i.e. the diffeedmetween the
observed and the estimated values) of a generalized additive model (GAM) have to be independent
and normally distributed. However, when analyzing time series which are relativebth andlow
moving (such as the movement of the tongue tiner), the residuals will generally be autocorrelated.
This means that the residsal timet will be correlated with the residisadt timet + 1 (see Figure,
left). In our case, the autocorrelation present in the residuasy high at abold.9% at lag 1 If this
autocorrelation is ntdorought into the modethe p-values of the modelill be toolow. Fortunately,
the functionbamof themgcvpackage we use toeatethe GAMSs is able téake into account the
autocorrelation of the residudkseeFigure5, right, whereafter correctiorthe autocorrelation at lag 1
has been reduced to below)) thereby enabling a more reliable assessment of the model fit and the
associateq-values.Anotherimportantbenefitof the bamfunction isthat it isableto work with large
datasets (Wood et al., 2014), such as the data included in thigaiadyl.7 million positions 34
speakersthreesensorstwo axes, 97 words repeated twice, and averageluration of about @3
seconds43 measurement points, peord).

After model fitting, we followed the model criticism procedure put forward by Baayen (2008;
Ch. 6.2.3). This procedure showed that the residuals of the models we fitted exhibitenmatity
and heteroscedasticity (i.e. the variance of the rafdduas not constant across the fitted values).
Consequently, after fitting these models, we excluded the data points for which the absolute
standardized residuals were greater than 2.5 (i.e. those data points for which the predicted and actual
values difered to a large extent). We then refitted the same model on the smaller dataset (generally
containing about 98% of the original data). As this procedure resulted in improved characteristics of
the residuals, all results reported in this paper are baste sesulting modelafter model criticism.

A clear advantage of this procedure is that it reduces the likelihood of reporting effects as significant,
if theseeffectsare carried by data points for which the model is not adequate.

0.4

0.2

Position (normalized)
0.0
|

-0.2

-0.4

Time (normalized)

Figure 4. Individual adjustments to the general tongue movement trajectories. As the average of these adjustments is
approximately O (i.e. centered), both positive and negative adjustments are possible.
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Figure 5. Autocorrelation in the residuals. Left: without correction, right: after correction.

Reproducibility

To facilitate reproducibility and the use of the methods illustrated in this study, the data, methods and
results are available as a paper packagedtat the Mind Research Repository

(http://openscience.uthi e i pzi g. de) and t(Roeandnymous revietioweleo r 6 s we b
the resulting analysis file can be downloaded hatps://srv
filel.gofile.io/download/8eTFzL/5f4b4935228096696e0abd2i®)23dc/analysis.html

Results

As an illustration of the generalized atilek modeling approach, Figuéshows thenormalized

tongue movemertajectoriedor each othe three tongue sensaeparatelyguring the pronunciation

of four dialect wordstaarten 6 c(gekezaffypronouncedtfE { imTer Apel and{ to] in
Ubbergen)bogen bo@ws(generally pronouncedd o u] o Aer Apel andp o bHin Ubbergen)tol,
6topbd (spinni n@inbothyialectp andkanwegl n o ec dganerdllydpronounced

[kbmel] in both dialects)Similarly, Figure 7 shows the same type of visualizatiotiorCVC
sequencem standard Dutchaat, [tat] andpoop [pop] The red and blue dots in the graph indicate

the measured tongue positions oftbgtoupsThe red(dark)curves indicate the fitted tongue
trajectories of the speakers in Ubberfmmword-specific modelswhereas thdighter) blue curves

are linked tahespeakers in Ter Apel. Threlativelightnessof eachcurvevisualizes the timeourse

from the beginning of the word (d&%) to the end of the word (ligas). Clearly thearticulationsfor
taartenandbogenare more different (specifically in the shape of the trajectories) than the articulations
for tol andkameeland alsdaatandpoopin Figure 7) which only seem to differ with respect to the
posterior position (further back in Ter Apel than in Ubbergkenaddition the pronunciations fdaat
show a greater distinction between the two speaker groups than the pronunfiapoog A general
pattern across aflix graphsin Figures 6 and,however, is that the speakers from Ubbergen appear to
have moreanteriortongue positions than those from Ter Apel.

The fitted trajectories were obtained by creating a single GAM for each siktwerds
simultaneously for all three sensors and both .drethe GAMspecification a differentSFwas fitted
for each groupThecommand to fit such a modiar a single word (simplified: only for a single
sensor in a singldimension)using thefunctionbam of themgcv packages:

model = bam(Position ~ s(Time,by=Group) + Group +
s(Time,S peaker , bs=6f s6, m=1) 6) rho=0.9
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Figure 6. Fitted tongue trajectories (including individual points) of the three tongue sensors (left column: T1, middle column:
T2, right column: T3) for the two groups of speakers in two dimensions for four dialect words (one peheop)inis

represent the normalized position (a range of 1 for each speaker) relative to-#peaoch resting position (negative: in front
of/below the norspeech resting position; positive: behind/above thesp@ech resting position). Higher valuestioax-axis
indicate positions which are further bagosterior) Higher values on thg-axis indicate positions which are higher

(superior) The darkness of the line indicates the time course of the trajectories (dark: start of the pronunciatiemd lafht:

the pronunciation).
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Figure 7. Fitted tongue trajectories (including individual points) of the three tongue sensors (left column: T1, middle column:
T2, right column: T3) for the two groups of speakers in two dimension&/€VC sequences (one per row). The points
represent the normalized position (a range of 1 for each speaker) relative to-#peaci resting position (negative: in front
of/below the norspeech resting position; positive: behind/above thespeech esting position). Higher values on tk@xis
indicate positions which are further bgglosterior) Higher values on thgaxis indicate positions which are higher

(superior) The darkness of the line indicates the time course of the trajectoriessfdariof the pronunciation, light: end of

the pronunciation).

Theinterpretation of thisSSAM specificationis that thesensopositionis predicted on the basis of a
nonlinearpattern acrosghormalizedtime per group (Ter Apel vs. Ubbergen
s(Time,by=Gr oup) ), while simultaneouslyaking into account thepgakerrelated variation via a
factor smooththebs=& Dlock m=1limits the wigglyness of the curve pgyeaker which is
suitable for thesaonlinearandom effects Therho value(herefixed at 0.%) indicates the amount
of autocorrelation in the residuals which needs to be taken into a¢seargxplanation, abov@he
linearcontrast between the two grou@réup ) is added to the model as the smdaitfctions are
centered anthus wable tomodela constan(intercept)difference between the two groups.

To see at which points the trajectortliffer significantlyfrom each other, confidence
intervals are neededhese cameadilybeextracted from the fitted GAMsing the R packagesadug
(version 2.2; van Rij et al., 2016ligure8, visualizing the resulting trajectories and differences for
the CVC sequencaat, shows that the differende the posterior position significantacross a large
part of the tine coursewhile there is no significant height differen&®hile this visualization
suggests that the distinction between the two groups is necéssadhe posterior position}his
should be assessed more formallijzere are two approaches for thiseTinst is fitting a simpler
model without the group distinction, and comparing this simpler model to the more complex model
having the group distinction to see if the additional complexity is warranted (e.g., by comparing the
difference in maximum likelibod scores while taking into account the difference in model
complexity).The drawback of this approach is that multiple models need to be fitted, and given that
the full model (on the basis of all data) takes a long time to fit (approxingbeyrs usig 16
processors simultaneously on a fast semysing a single processor would take about 27 hdlies
required amount of timeeededor this approach becomes prohibitive.



Consequently, we turn to another approach, which consistspécifyng the nodel in such a
way that it does not fit the SFs for the two groups separately, but fisdheeSFor a single group (i.e.
the reference level) and a secamibothfunction representing theonlineardifference between the
two groups (i.e. thdifferenceSF which needs to be added to the SF of the first group to yield the SF
of the second grouppdditionally, as the SFs are centered, a fie@i@ct contrast is included to model
the constant (i.e. intercept) difference between the two grdtpsissociateg-values obtained from
the model summarfpr the fixedeffect contrast and the ndimear SFwill then directly indicate if the
distinction between the two groujssnecessary or noand if the difference consists of an intercept
shift and/ora nonlinear differencelf the fixed-effect contrast is significant, this indicates that there is
a constanfintercept)difference between the two groups (e.g., Ter Apel might show a greater posterior
position than Ubbergen). Similarly, if the differen8F is significant, this indicates that the tioear
tongue sensor movemepdttern of the two groups differShe command to fit this type of modgbr
a single wordj)s:

diff . model = bam(Position ~ s(Time ) + s(Time,by=IsTerApel O +
IsTerApelO + s(Time,S peaker , bs=6f sdé6, m=1) 6) r ho=0.

In this casdsTerApel Ois an ordered factoequal to 1 for the speakers from Ter Apel and O for
those from Ubbergen. The SF containing this predis{dime,by=IsTerApel O , will be equal
to 0 when therdered factoequals 0. This implies that the first smoothing funcgtggiiime) , will
be the articulatory trajectory for the Ubbergen group. As the firssFne) , is never equal to 0,
this also implies that theecondSF, s(Time,by= IsTerApel O , must be equal to theortlinear
difference between the Ter Apel and Ubbergen speakeesfixedeffect predictoisTerApelO
models the constant (intercept) difference between the two grieoipthevisualizationin Figures,
both the constdrdifference and the difference SF were significant for the posterior position difference
(p < 0.06), whereas theeight difference was not significaft> 0.05)

While it is usefulto focus on the differences in the pronunciation of individual words, an
aggregate analysis is able to provide a ngameral and robusiew of tongue trajectory differences.
In our aggregatenode| we simultaneously analyzed the three tongue sensorsvarakedor a large
set of wordsRather than using a singééTime) for the reference level (Ubbergemgin thesimple
example above, we now need sg@patterns over time for each tongue sensor andiaxibeight
and posterior position for the TI2 and T3 sensoysThis can be accomplisheg bdding a by
parametedistinguishing these six levels (i.e. the interaction between sensor and axis, stored in the
variableSensorAxis ). Similarly, rather than a single SF representingitrelineardifference
between Ter Apel and Ubbergen (via the use of-adniable), sixdifferenceSFs are neededne for
each combination of sensor and aSsnilarly, six fixedeffect predictors are necessary modeling the
constant differences between the two goConsequently, sinrdered factopredictors are created
which are equal to 1 for the group of Ter Apel for a specific sensor and axis. For example, the
predictorlsTA.T1.H Oequals 1 for th@ositions associated with the inferdsuperior axis of th&1
sensor fothe Ter Apel group, whildsTA.T3.P  Ois equal to 1 for thpositions associated with the
anteriorposterior axis of th@3 sensofor the Ter Apel groupThe speakerelated variability must
also be allowed to vary for each of the six comboratiof sensors and ax@is can be achiedeby
creating a new predict@peaker SensorAxis representinghe interaction between thieree
predictorsSpeaker , Sensor , Axis and using thipredictorin the factor smooth. Given that we are
now aggregating over a large set of words,alsdneed to take into account the variability per word
via a factor smooth. Importantly, as the differences between the two groups might be larger for one
word than another, we also need to allow for this vaitgbConsequently, we construct a new
predictorWordGroupSensorAxis  representing the interaction between the four predidttms],
Group, Sensor , Axis . This predictor is used in a separ&etor smoothThe specification of this
model isas follows

model = bam(Pos ~ s(Time ,by=SensorAxis )+ SensorAxis +
s(Time,by=IsT A.T1H O+ ISTAT1.HO +



s(Time,by=ISTA.T1.P O+ ISTAT1.PO +
s(Time,by=ISTA.T2.H O+ ISTAT2.HO +
s(Time,by=ISTA.T2.P O+ ISTAT2.PO +
s(Time,by=ISTA.T3.H O+ ISTAT3.HO +
s(Time,by=ISTA.T3.P O+ ISTAT3.PO+
s(Time,S peaker Sensor Axi s, bs
s(Time,Word GroupSe nsor Axi s, bs
rho=0.9 6)
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For example, i6(Time,by=ISTA.T1.PO) is found to besignificant, this indicatgthat the non
linear difference between the two groups for the T1 sensor in the amtesi@rior direction is
significant, and therefore thatif necessary to distinguish the two groups with respect foatterior
positionof the T1 sensor. Similarly, IETA.T1.PO s found tobe significant, this indicasethe
presence o significantconstan{intercept)difference in the anteriguosteriordirection between the
two groups.
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Figure 8. T1 sensor and sensor difference trajectories for the CVC seqtaaiciaf, in the anterioposterior dimension

(left) and the height dimension (right) for both groups. The upper graphs show the trajectories per group including 95%
confidence bands together with the individual points. The lower graphs show the difference leéite® groups

including confidence bands (and marked areas where the difference is significantly different from 0: for the posteor positi



it appears to be significantly different fedfrontthedttedr onunci at
GAM (which took the individual variation and autocorrelation in the residuals into account).

As it might be necessary to distinguish CVC sequences from dialect words (i.e. the difference
between the two groups might be larger for thaedit words than for the CVC sequences)
extended the modspecificatiorto take this into accouialso in the randoreffects structure per
speaker) The model below shows this extension:

model =bam(Pos ~s(Time ,by=SensorAxis) + SensorAxis +
s(Time,by=ISTA.T1.HO) + ISTA.T1.HO +
s(Time,by=ISTA.T1.PO) + ISTA.T1.PO +
s(Time,by=ISTA.T2.HO) + ISTA.T2.HO +
s(Time,by=ISTA.T2.PO) + ISTA.T2.PO +
s(Time,by=ISTA.T3.HO) + ISTA.T3.HO +
s(Time,by=ISTA.T3.PO) + ISTA.T3.PO +
s(Time,by=IsCVC.T1.HO) + IsCVC.T1.HO +
s(Time,by=IsCVC.T1.PO) + IsCVC.T1.PO +
s(Time,by=IsCVC.T2.HO) + IsCVC.T2.HO +
s(Time,by=IsCVC.T2.PO) + IsCVC.T2.PO +
s(Time,by=IsCVC.T3.HO) + IsCVC.T3.HO +
s(Time,by=IsCVC.T3.PO) + IsCVC.T3.PO +
s(Time,by=ISTACVC.T1.HO) + ISTACVC.T1.HO +
s(Time,by=ISTACVC.T1 .PO) + ISTACVC.T1.PO +
s(Time,by=ISTACVC.T2.HO) + ISTACVC.T2.HO +
s(Time,by=ISTACVC.T2.PO) + ISTACVC.T2.PO +
s(Time,by=ISTACVC.T3.HO) + ISTACVC.T3.HO +
s(Time,by=ISTACVC.T3.PO) + ISTA CVCT3.PO +
s(Time, Speaker TypeSensor Axi s,
s(Ti me, WordGroupSensor Axi s, bs
rho=0.9 6)
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While much larger, the model resembles the previous model to a large extent. The diffetfeatce is
there are now two sets of additional ordered factors included. Thesix fie three sensors and two
axes) newsCVC ordered factors ansix newIsTACVC ordered factors. ThisCVC ordered factors
allow the model to represent the Hamear and intercept differences between the CVC sequences and
the dialect words. Given that the two types of stimuli differ substantially in their structure, significance
of these SFs will not be surping (nor very informative). However, th€TACVC ordered factors
allow the model to represent a potential distinction (bothlm&ar and in the intercept) between the
group difference (i.e. Ter Apel vs. Ubbergen) for the CVC sequences versus thieveiadisc For
example, the difference between the two groups (for example in the posterior position of the T1
sensor) might be stronger for the dialect words than for the CVC sequences, and this would be
reflected in the significance of eithgfTime,by=IsT ACVC.T1.PO) or ISTACVC.T1.PO . Of
course the model specification above can be made simpler, by excludisgnificant terms.

Following thismodel specification, wétted a singldargescale GAMon 1.7 million tongue
sensor positions. The model tooloab8 hours to fit the modedn a high performance server witlé
Intel Xeon E52699 v3processorsAs the model fit revealed that ory=ISCVC SFs andsTA
fixed-effect factors reached significance, we report the results on the basigalfovang simpler
model:

model =bam(Pos ~s(Time ,by=SensorAxis) + SensorAxis +
ISTA.T1.HO + ISTA.T1.PO + ISTA.T2.HO +
ISTA.T2.PO + ISTA.T3.HO + ISTA.T3.PO +
s(Time,by=IsCVC.T1.HO) + s(Time,by=IsCVC.T1.PO) +
s(Time,by=IsCVC.T2.HO) + s(Time,by=IsCVC.T2.PO) +
s(Time,by=IsCVC.T3.HO) + s(Time,by=IsCVC.T3.PO) +
S(Ti me, Speaker TypeSensor Axi s, bs=0f so,



s(Time,WordGr oupSensor Axi s, bs=6fsoéfm=1) ,

The results of the model are shown in Talé¢sarametric part: fixed effectand3 (smooth
functions) Theexplained variance of the model is equehbout 906, due mainly to the inclusion of
the factor smooths pagpeakerand word. Thdirst line of theparametric part of the model shown in
Table2 simply shows the reference sensor position (i.e. the intercept is equal to the posterior position
of the T3 sensor). Furthermore, the next five lines conbaraeighof the T3 sensor and the height
and posterior position of the other sengorthe posterior position of the T3 sensor (i.e. the intercept)
While the comparison between height and posterior position is not informative as such, these
comparisons are reqei as the model includes both dimensions simultanedusixertheless, these
results show that the normalized posterior positianth(respect tadhe nonspeech resting position)
do not differ significantly, whereas the normalized height of the sensors is generally lower than the
normalizedposterior position.

Lines 7 to 12 of Table 2 are more informative, however. These compare the (constant)
pogerior position and height difference between the two groups. Clearly, the group differences with
respect to the posterior positions of the three sensors are all signifiea@t(d5). The positive
estimates indicate that the speakers from Ter Apel hava@ posterior tongue position than those
from Ubbergen. There were no significant height differences between the two groups|s&Ge
andIsTACVC fixed-effect factors did not reach significance, this indicates that the pattern is general
and holds bth for the dialect and the standard Dutch pronunciations.

Table3 providesinformation about the Skis the modebnd shows (in lines 1 to 6) that there
are significant no#inear trajectories associated with the various sensors (for the two axes).
Furthemore, lines 7 to 12 of Table 3 show that for various sensors, there are significdineaon
sensor trajectory differences comparing the dialect words to the CVC sequences. However, this is not
surprising 6r interesting) given that the CVC sequencegeha specific structure (a consonant
followed by a vowel followed by a consonant), which is not the case for the dialect words (see Table
1). Importantly, note that the difference between the twagsis the same across both CVC
sequences and dialect wler

Figure 9 shows a visual impression of the relative position of the three tongue sensors both for
the dialect words and the CVC sequences. It is immediately obvious that the position of the tongue
sensors is more posterior for the speakers from Tek (Rgftecting the result shown in Table 2)

Figure 10 and 11 provide a visualization of the trajectories over time, as well as their difference, for
the dialect words and the CVC sequences, respectively.

Validation

To validate these results, we conducted two additional analyses. In the first analysis, we only analyzed
the five dialect words (marked in bold face in Table 1) whichgtamhologicallyidentical
specificationsn the two dialectsResultswith respect tahe fixed effects (i.e. the constant differences
between the two groupaye shown in Table #s there were no significant ndimear differences
between théwo dialectgroups, the table with the ndinear trajectories isot shown herébut it can

be found in Section 6.4.1 of the supplementary matetiathe second analysis, we only analyzed the
It/ segmerd (Table 5) Similar & for the other analysis, th&ble with the nodinear trajectories is not
shown here as there were no significant-tioear differences between the two groups (but see
Section 6.5.1 of the supplementary materBéth analyses confirmed tleiginal pattern shown in
Table 3, with the tongue sensors having larger posterior positions in Ter Apel than in Ubfibegen
correponding lines arenarked initalicsin Tables 4 and 5)ut no height difference between the two
groups Note that despite being in the correct direction and of similar magnitude, the diffevesree
not significant(0.07 < p < 0.19; see Tabld) in the first analysigon the basis of five dialect words)
However, this is unsurprising, given that only a smatliset of the data was includdéthe differences
were highly significan{p < 0.00% see Table Bin the second analysis.






